Treatise on Light - LightNovelsOnl.com
You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.
Treatise on Light.
by Christiaan Huygens.
PREFACE
I wrote this Treatise during my sojourn in France twelve years ago, and I communicated it in the year 1678 to the learned persons who then composed the Royal Academy of Science, to the members.h.i.+p of which the King had done me the honour of calling, me. Several of that body who are still alive will remember having been present when I read it, and above the rest those amongst them who applied themselves particularly to the study of Mathematics; of whom I cannot cite more than the celebrated gentlemen Ca.s.sini, Romer, and De la Hire. And, although I have since corrected and changed some parts, the copies which I had made of it at that time may serve for proof that I have yet added nothing to it save some conjectures touching the formation of Iceland Crystal, and a novel observation on the refraction of Rock Crystal. I have desired to relate these particulars to make known how long I have meditated the things which now I publish, and not for the purpose of detracting from the merit of those who, without having seen anything that I have written, may be found to have treated of like matters: as has in fact occurred to two eminent Geometricians, Messieurs Newton and Leibnitz, with respect to the Problem of the figure of gla.s.ses for collecting rays when one of the surfaces is given.
One may ask why I have so long delayed to bring this work to the light. The reason is that I wrote it rather carelessly in the Language in which it appears, with the intention of translating it into Latin, so doing in order to obtain greater attention to the thing. After which I proposed to myself to give it out along with another Treatise on Dioptrics, in which I explain the effects of Telescopes and those things which belong more to that Science. But the pleasure of novelty being past, I have put off from time to time the execution of this design, and I know not when I shall ever come to an end if it, being often turned aside either by business or by some new study.
Considering which I have finally judged that it was better worth while to publish this writing, such as it is, than to let it run the risk, by waiting longer, of remaining lost.
There will be seen in it demonstrations of those kinds which do not produce as great a cert.i.tude as those of Geometry, and which even differ much therefrom, since whereas the Geometers prove their Propositions by fixed and incontestable Principles, here the Principles are verified by the conclusions to be drawn from them; the nature of these things not allowing of this being done otherwise.
It is always possible to attain thereby to a degree of probability which very often is scarcely less than complete proof. To wit, when things which have been demonstrated by the Principles that have been a.s.sumed correspond perfectly to the phenomena which experiment has brought under observation; especially when there are a great number of them, and further, princ.i.p.ally, when one can imagine and foresee new phenomena which ought to follow from the hypotheses which one employs, and when one finds that therein the fact corresponds to our prevision.
But if all these proofs of probability are met with in that which I propose to discuss, as it seems to me they are, this ought to be a very strong confirmation of the success of my inquiry; and it must be ill if the facts are not pretty much as I represent them. I would believe then that those who love to know the Causes of things and who are able to admire the marvels of Light, will find some satisfaction in these various speculations regarding it, and in the new explanation of its famous property which is the main foundation of the construction of our eyes and of those great inventions which extend so vastly the use of them.
I hope also that there will be some who by following these beginnings will penetrate much further into this question than I have been able to do, since the subject must be far from being exhausted. This appears from the pa.s.sages which I have indicated where I leave certain difficulties without having resolved them, and still more from matters which I have not touched at all, such as Luminous Bodies of several sorts, and all that concerns Colours; in which no one until now can boast of having succeeded. Finally, there remains much more to be investigated touching the nature of Light which I do not pretend to have disclosed, and I shall owe much in return to him who shall be able to supplement that which is here lacking to me in knowledge. The Hague. The 8 January 1690.
NOTE BY THE TRANSLATOR
Considering the great influence which this Treatise has exercised in the development of the Science of Optics, it seems strange that two centuries should have pa.s.sed before an English edition of the work appeared. Perhaps the circ.u.mstance is due to the mistaken zeal with which formerly everything that conflicted with the cherished ideas of Newton was denounced by his followers. The Treatise on Light of Huygens has, however, withstood the test of time: and even now the exquisite skill with which he applied his conception of the propagation of waves of light to unravel the intricacies of the phenomena of the double refraction of crystals, and of the refraction of the atmosphere, will excite the admiration of the student of Optics. It is true that his wave theory was far from the complete doctrine as subsequently developed by Thomas Young and Augustin Fresnel, and belonged rather to geometrical than to physical Optics.
If Huygens had no conception of transverse vibrations, of the principle of interference, or of the existence of the ordered sequence of waves in trains, he nevertheless attained to a remarkably clear understanding of the principles of wave-propagation; and his exposition of the subject marks an epoch in the treatment of Optical problems. It has been needful in preparing this translation to exercise care lest one should import into the author's text ideas of subsequent date, by using words that have come to imply modern conceptions. Hence the adoption of as literal a rendering as possible.
A few of the author's terms need explanation. He uses the word "refraction," for example, both for the phenomenon or process usually so denoted, and for the result of that process: thus the refracted ray he habitually terms "the refraction" of the incident ray. When a wave-front, or, as he terms it, a "wave," has pa.s.sed from some initial position to a subsequent one, he terms the wave-front in its subsequent position "the continuation" of the wave. He also speaks of the envelope of a set of elementary waves, formed by coalescence of those elementary wave-fronts, as "the termination" of the wave; and the elementary wave-fronts he terms "particular" waves. Owing to the circ.u.mstance that the French word _rayon_ possesses the double signification of ray of light and radius of a circle, he avoids its use in the latter sense and speaks always of the semi-diameter, not of the radius. His speculations as to the ether, his suggestive views of the structure of crystalline bodies, and his explanation of opacity, slight as they are, will possibly surprise the reader by their seeming modernness. And none can read his investigation of the phenomena found in Iceland spar without marvelling at his insight and sagacity.
S.P.T.
June, 1912.
CHAPTER I
ON RAYS PROPAGATED IN STRAIGHT LINES
As happens in all the sciences in which Geometry is applied to matter, the demonstrations concerning Optics are founded on truths drawn from experience. Such are that the rays of light are propagated in straight lines; that the angles of reflexion and of incidence are equal; and that in refraction the ray is bent according to the law of sines, now so well known, and which is no less certain than the preceding laws.
The majority of those who have written touching the various parts of Optics have contented themselves with presuming these truths. But some, more inquiring, have desired to investigate the origin and the causes, considering these to be in themselves wonderful effects of Nature. In which they advanced some ingenious things, but not however such that the most intelligent folk do not wish for better and more satisfactory explanations. Wherefore I here desire to propound what I have meditated on the subject, so as to contribute as much as I can to the explanation of this department of Natural Science, which, not without reason, is reputed to be one of its most difficult parts. I recognize myself to be much indebted to those who were the first to begin to dissipate the strange obscurity in which these things were enveloped, and to give us hope that they might be explained by intelligible reasoning. But, on the other hand I am astonished also that even here these have often been willing to offer, as a.s.sured and demonstrative, reasonings which were far from conclusive. For I do not find that any one has yet given a probable explanation of the first and most notable phenomena of light, namely why it is not propagated except in straight lines, and how visible rays, coming from an infinitude of diverse places, cross one another without hindering one another in any way.
I shall therefore essay in this book, to give, in accordance with the principles accepted in the Philosophy of the present day, some clearer and more probable reasons, firstly of these properties of light propagated rectilinearly; secondly of light which is reflected on meeting other bodies. Then I shall explain the phenomena of those rays which are said to suffer refraction on pa.s.sing through transparent bodies of different sorts; and in this part I shall also explain the effects of the refraction of the air by the different densities of the Atmosphere.
Thereafter I shall examine the causes of the strange refraction of a certain kind of Crystal which is brought from Iceland. And finally I shall treat of the various shapes of transparent and reflecting bodies by which rays are collected at a point or are turned aside in various ways. From this it will be seen with what facility, following our new Theory, we find not only the Ellipses, Hyperbolas, and other curves which Mr. Des Cartes has ingeniously invented for this purpose; but also those which the surface of a gla.s.s lens ought to possess when its other surface is given as spherical or plane, or of any other figure that may be.
It is inconceivable to doubt that light consists in the motion of some sort of matter. For whether one considers its production, one sees that here upon the Earth it is chiefly engendered by fire and flame which contain without doubt bodies that are in rapid motion, since they dissolve and melt many other bodies, even the most solid; or whether one considers its effects, one sees that when light is collected, as by concave mirrors, it has the property of burning as a fire does, that is to say it disunites the particles of bodies. This is a.s.suredly the mark of motion, at least in the true Philosophy, in which one conceives the causes of all natural effects in terms of mechanical motions. This, in my opinion, we must necessarily do, or else renounce all hopes of ever comprehending anything in Physics.
And as, according to this Philosophy, one holds as certain that the sensation of sight is excited only by the impression of some movement of a kind of matter which acts on the nerves at the back of our eyes, there is here yet one reason more for believing that light consists in a movement of the matter which exists between us and the luminous body.
Further, when one considers the extreme speed with which light spreads on every side, and how, when it comes from different regions, even from those directly opposite, the rays traverse one another without hindrance, one may well understand that when we see a luminous object, it cannot be by any transport of matter coming to us from this object, in the way in which a shot or an arrow traverses the air; for a.s.suredly that would too greatly impugn these two properties of light, especially the second of them. It is then in some other way that light spreads; and that which can lead us to comprehend it is the knowledge which we have of the spreading of Sound in the air.
We know that by means of the air, which is an invisible and impalpable body, Sound spreads around the spot where it has been produced, by a movement which is pa.s.sed on successively from one part of the air to another; and that the spreading of this movement, taking place equally rapidly on all sides, ought to form spherical surfaces ever enlarging and which strike our ears. Now there is no doubt at all that light also comes from the luminous body to our eyes by some movement impressed on the matter which is between the two; since, as we have already seen, it cannot be by the transport of a body which pa.s.ses from one to the other. If, in addition, light takes time for its pa.s.sage--which we are now going to examine--it will follow that this movement, impressed on the intervening matter, is successive; and consequently it spreads, as Sound does, by spherical surfaces and waves: for I call them waves from their resemblance to those which are seen to be formed in water when a stone is thrown into it, and which present a successive spreading as circles, though these arise from another cause, and are only in a flat surface.
To see then whether the spreading of light takes time, let us consider first whether there are any facts of experience which can convince us to the contrary. As to those which can be made here on the Earth, by striking lights at great distances, although they prove that light takes no sensible time to pa.s.s over these distances, one may say with good reason that they are too small, and that the only conclusion to be drawn from them is that the pa.s.sage of light is extremely rapid.
Mr. Des Cartes, who was of opinion that it is instantaneous, founded his views, not without reason, upon a better basis of experience, drawn from the Eclipses of the Moon; which, nevertheless, as I shall show, is not at all convincing. I will set it forth, in a way a little different from his, in order to make the conclusion more comprehensible.
[Ill.u.s.tration]
Let A be the place of the sun, BD a part of the orbit or annual path of the Earth: ABC a straight line which I suppose to meet the orbit of the Moon, which is represented by the circle CD, at C.
Now if light requires time, for example one hour, to traverse the s.p.a.ce which is between the Earth and the Moon, it will follow that the Earth having arrived at B, the shadow which it casts, or the interruption of the light, will not yet have arrived at the point C, but will only arrive there an hour after. It will then be one hour after, reckoning from the moment when the Earth was at B, that the Moon, arriving at C, will be obscured: but this obscuration or interruption of the light will not reach the Earth till after another hour. Let us suppose that the Earth in these two hours will have arrived at E. The Earth then, being at E, will see the Eclipsed Moon at C, which it left an hour before, and at the same time will see the sun at A. For it being immovable, as I suppose with Copernicus, and the light moving always in straight lines, it must always appear where it is. But one has always observed, we are told, that the eclipsed Moon appears at the point of the Ecliptic opposite to the Sun; and yet here it would appear in arrear of that point by an amount equal to the angle GEC, the supplement of AEC. This, however, is contrary to experience, since the angle GEC would be very sensible, and about 33 degrees. Now according to our computation, which is given in the Treatise on the causes of the phenomena of Saturn, the distance BA between the Earth and the Sun is about twelve thousand diameters of the Earth, and hence four hundred times greater than BC the distance of the Moon, which is 30 diameters. Then the angle ECB will be nearly four hundred times greater than BAE, which is five minutes; namely, the path which the earth travels in two hours along its...o...b..t; and thus the angle BCE will be nearly 33 degrees; and likewise the angle CEG, which is greater by five minutes.
But it must be noted that the speed of light in this argument has been a.s.sumed such that it takes a time of one hour to make the pa.s.sage from here to the Moon. If one supposes that for this it requires only one minute of time, then it is manifest that the angle CEG will only be 33 minutes; and if it requires only ten seconds of time, the angle will be less than six minutes. And then it will not be easy to perceive anything of it in observations of the Eclipse; nor, consequently, will it be permissible to deduce from it that the movement of light is instantaneous.
It is true that we are here supposing a strange velocity that would be a hundred thousand times greater than that of Sound. For Sound, according to what I have observed, travels about 180 Toises in the time of one Second, or in about one beat of the pulse. But this supposition ought not to seem to be an impossibility; since it is not a question of the transport of a body with so great a speed, but of a successive movement which is pa.s.sed on from some bodies to others. I have then made no difficulty, in meditating on these things, in supposing that the emanation of light is accomplished with time, seeing that in this way all its phenomena can be explained, and that in following the contrary opinion everything is incomprehensible. For it has always seemed tome that even Mr. Des Cartes, whose aim has been to treat all the subjects of Physics intelligibly, and who a.s.suredly has succeeded in this better than any one before him, has said nothing that is not full of difficulties, or even inconceivable, in dealing with Light and its properties.
But that which I employed only as a hypothesis, has recently received great seemingness as an established truth by the ingenious proof of Mr. Romer which I am going here to relate, expecting him himself to give all that is needed for its confirmation. It is founded as is the preceding argument upon celestial observations, and proves not only that Light takes time for its pa.s.sage, but also demonstrates how much time it takes, and that its velocity is even at least six times greater than that which I have just stated.
For this he makes use of the Eclipses suffered by the little planets which revolve around Jupiter, and which often enter his shadow: and see what is his reasoning. Let A be the Sun, BCDE the annual orbit of the Earth, F Jupiter, GN the orbit of the nearest of his Satellites, for it is this one which is more apt for this investigation than any of the other three, because of the quickness of its revolution. Let G be this Satellite entering into the shadow of Jupiter, H the same Satellite emerging from the shadow.
[Ill.u.s.tration]
Let it be then supposed, the Earth being at B some time before the last quadrature, that one has seen the said Satellite emerge from the shadow; it must needs be, if the Earth remains at the same place, that, after 42-1/2 hours, one would again see a similar emergence, because that is the time in which it makes the round of its...o...b..t, and when it would come again into opposition to the Sun. And if the Earth, for instance, were to remain always at B during 30 revolutions of this Satellite, one would see it again emerge from the shadow after 30 times 42-1/2 hours. But the Earth having been carried along during this time to C, increasing thus its distance from Jupiter, it follows that if Light requires time for its pa.s.sage the illumination of the little planet will be perceived later at C than it would have been at B, and that there must be added to this time of 30 times 42-1/2 hours that which the Light has required to traverse the s.p.a.ce MC, the difference of the s.p.a.ces CH, BH. Similarly at the other quadrature when the earth has come to E from D while approaching toward Jupiter, the immersions of the Satellite ought to be observed at E earlier than they would have been seen if the Earth had remained at D.
Now in quant.i.ties of observations of these Eclipses, made during ten consecutive years, these differences have been found to be very considerable, such as ten minutes and more; and from them it has been concluded that in order to traverse the whole diameter of the annual orbit KL, which is double the distance from here to the sun, Light requires about 22 minutes of time.
The movement of Jupiter in his...o...b..t while the Earth pa.s.sed from B to C, or from D to E, is included in this calculation; and this makes it evident that one cannot attribute the r.e.t.a.r.dation of these illuminations or the antic.i.p.ation of the eclipses, either to any irregularity occurring in the movement of the little planet or to its eccentricity.
If one considers the vast size of the diameter KL, which according to me is some 24 thousand diameters of the Earth, one will acknowledge the extreme velocity of Light. For, supposing that KL is no more than 22 thousand of these diameters, it appears that being traversed in 22 minutes this makes the speed a thousand diameters in one minute, that is 16-2/3 diameters in one second or in one beat of the pulse, which makes more than 11 hundred times a hundred thousand toises; since the diameter of the Earth contains 2,865 leagues, reckoned at 25 to the degree, and each each league is 2,282 Toises, according to the exact measurement which Mr. Picard made by order of the King in 1669. But Sound, as I have said above, only travels 180 toises in the same time of one second: hence the velocity of Light is more than six hundred thousand times greater than that of Sound. This, however, is quite another thing from being instantaneous, since there is all the difference between a finite thing and an infinite. Now the successive movement of Light being confirmed in this way, it follows, as I have said, that it spreads by spherical waves, like the movement of Sound.
But if the one resembles the other in this respect, they differ in many other things; to wit, in the first production of the movement which causes them; in the matter in which the movement spreads; and in the manner in which it is propagated. As to that which occurs in the production of Sound, one knows that it is occasioned by the agitation undergone by an entire body, or by a considerable part of one, which shakes all the contiguous air. But the movement of the Light must originate as from each point of the luminous object, else we should not be able to perceive all the different parts of that object, as will be more evident in that which follows. And I do not believe that this movement can be better explained than by supposing that all those of the luminous bodies which are liquid, such as flames, and apparently the sun and the stars, are composed of particles which float in a much more subtle medium which agitates them with great rapidity, and makes them strike against the particles of the ether which surrounds them, and which are much smaller than they. But I hold also that in luminous solids such as charcoal or metal made red hot in the fire, this same movement is caused by the violent agitation of the particles of the metal or of the wood; those of them which are on the surface striking similarly against the ethereal matter. The agitation, moreover, of the particles which engender the light ought to be much more prompt and more rapid than is that of the bodies which cause sound, since we do not see that the tremors of a body which is giving out a sound are capable of giving rise to Light, even as the movement of the hand in the air is not capable of producing Sound.
Now if one examines what this matter may be in which the movement coming from the luminous body is propagated, which I call Ethereal matter, one will see that it is not the same that serves for the propagation of Sound. For one finds that the latter is really that which we feel and which we breathe, and which being removed from any place still leaves there the other kind of matter that serves to convey Light. This may be proved by shutting up a sounding body in a gla.s.s vessel from which the air is withdrawn by the machine which Mr.
Boyle has given us, and with which he has performed so many beautiful experiments. But in doing this of which I speak, care must be taken to place the sounding body on cotton or on feathers, in such a way that it cannot communicate its tremors either to the gla.s.s vessel which encloses it, or to the machine; a precaution which has. .h.i.therto been neglected. For then after having exhausted all the air one hears no Sound from the metal, though it is struck.
One sees here not only that our air, which does not penetrate through gla.s.s, is the matter by which Sound spreads; but also that it is not the same air but another kind of matter in which Light spreads; since if the air is removed from the vessel the Light does not cease to traverse it as before.
And this last point is demonstrated even more clearly by the celebrated experiment of Torricelli, in which the tube of gla.s.s from which the quicksilver has withdrawn itself, remaining void of air, transmits Light just the same as when air is in it. For this proves that a matter different from air exists in this tube, and that this matter must have penetrated the gla.s.s or the quicksilver, either one or the other, though they are both impenetrable to the air. And when, in the same experiment, one makes the vacuum after putting a little water above the quicksilver, one concludes equally that the said matter pa.s.ses through gla.s.s or water, or through both.
As regards the different modes in which I have said the movements of Sound and of Light are communicated, one may sufficiently comprehend how this occurs in the case of Sound if one considers that the air is of such a nature that it can be compressed and reduced to a much smaller s.p.a.ce than that which it ordinarily occupies. And in proportion as it is compressed the more does it exert an effort to regain its volume; for this property along with its penetrability, which remains notwithstanding its compression, seems to prove that it is made up of small bodies which float about and which are agitated very rapidly in the ethereal matter composed of much smaller parts. So that the cause of the spreading of Sound is the effort which these little bodies make in collisions with one another, to regain freedom when they are a little more squeezed together in the circuit of these waves than elsewhere.
But the extreme velocity of Light, and other properties which it has, cannot admit of such a propagation of motion, and I am about to show here the way in which I conceive it must occur. For this, it is needful to explain the property which hard bodies must possess to transmit movement from one to another.
When one takes a number of spheres of equal size, made of some very hard substance, and arranges them in a straight line, so that they touch one another, one finds, on striking with a similar sphere against the first of these spheres, that the motion pa.s.ses as in an instant to the last of them, which separates itself from the row, without one's being able to perceive that the others have been stirred. And even that one which was used to strike remains motionless with them. Whence one sees that the movement pa.s.ses with an extreme velocity which is the greater, the greater the hardness of the substance of the spheres.