LightNovesOnl.com

The Principles of Scientific Management Part 6

The Principles of Scientific Management - LightNovelsOnl.com

You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.

First. That they averaged from 80 to 100 per cent higher wages than they formerly received.

Second. Their hours of labor were shortened from 10 1/2 to 8 1/2 per day, with a Sat.u.r.day half holiday. And they were given four recreation periods properly distributed through the day, which made overworking impossible for a healthy girl.

Third. Each girl was made to feel that she was the object of especial care and interest on the part of the management, and that if anything went wrong with her she could always have a helper and teacher in the management to lean upon.

Fourth. All young women should be given two consecutive days of rest (with pay) each month, to be taken whenever they may choose. It is my impression that these girls were given this privilege, although I am not quite certain on this point.

The benefits which came to the company from these changes were:

First. A substantial improvement in the quality of the product.

Second. A material reduction in the cost of inspection, in spite of the extra expense involved in clerk work, teachers, time study, over-inspectors, and in paying higher wages.

Third. That the most friendly relations existed between the management and the employees, which rendered labor troubles of any kind or a strike impossible.

These good results were brought about by many changes which subst.i.tuted favorable for unfavorable working conditions. It should be appreciated, however, that the one element which did more than all of the others was, the careful selection of girls with quick perception to replace those whose perceptions were slow--(the subst.i.tution of girls with a low personal coefficient for those whose personal coefficient was high)--the scientific selection of the workers.

The ill.u.s.trations have thus far been purposely confined to the more elementary types of work, so that a very strong doubt must still remain as to whether this kind of cooperation is desirable in the case of more intelligent mechanics, that is, in the case of men who are more capable of generalization, and who would therefore be more likely, of their own volition, to choose the more scientific and better methods. The following ill.u.s.trations will be given for the purpose of demonstrating the fact that in the higher cla.s.ses of work the scientific laws which are developed are so intricate that the high-priced mechanic needs (even more than the cheap laborer) the cooperation of men better educated than himself in finding the laws, and then in selecting, developing, and training him to work in accordance with these laws. These ill.u.s.trations should make perfectly clear our original proposition that in practically all of the mechanic arts the science which underlies each workman's act is so great and amounts to so much that the workman who is best suited to actually doing the work is incapable, either through lack of education or through insufficient mental capacity, of understanding this science.

A doubt, for instance, will remain in the minds perhaps of most readers (in the case of an establishment which manufactures the same machine, year in and year out, in large quant.i.ties, and in which, therefore, each mechanic repeats the same limited series of operations over and over again), whether the ingenuity of each workman and the help which he from time to time receives from his foreman will not develop such superior methods and such a personal dexterity that no scientific study which could be made would result in a material increase in efficiency.

A number of years ago a company employing about three hundred men, which had been manufacturing the same machine for ten to fifteen years, sent for us to report as to whether any gain could be made through the introduction of scientific management. Their shops had been run for many years under a good superintendent and with excellent foremen and workmen, on piece work. The whole establishment was, without doubt, in better physical condition than the average machine-shop in this country.

The superintendent was distinctly displeased when told that through the adoption of task management the output, with the same number of men and machines, could be more than doubled. He said that he believed that any such statement was mere boasting, absolutely false, and instead of inspiring him with confidence, he was disgusted that any one should make such an impudent claim. He, however, readily a.s.sented to the proposition that he should select any one of the machines whose output he considered as representing the average of the shop, and that we should then demonstrate on this machine that through scientific methods its output could be more than doubled.

The machine selected by him fairly represented the work of the shop. It had been run for ten or twelve years past by a first-cla.s.s mechanic who was more than equal in his ability to the average workmen in the establishment. In a shop of this sort in which similar machines are made over and over again, the work is necessarily greatly subdivided, so that no one man works upon more than a comparatively small number of parts during the year. A careful record was therefore made, in the presence of both parties, of the time actually taken in finis.h.i.+ng each of the parts which this man worked upon. The total time required by him to finish each piece, as well as the exact speeds and feeds which he took, were noted and a record was kept of the time which he took in setting the work in the machine and removing it. After obtaining in this way a statement of what represented a fair average of the work done in the shop, we applied to this one machine the principles of scientific management.

By means of four quite elaborate slide-rules, which have been especially made for the purpose of determining the all-round capacity of metal-cutting machines, a careful a.n.a.lysis was made of every element of this machine in its relation to the work in hand. Its Pulling power at its various speeds, its feeding capacity, and its proper speeds were determined by means of the slide-rules, and changes were then made in the countershaft and driving pulleys so as to run it at its proper speed. Tools, made of high-speed steel, and of the proper shapes, were properly dressed, treated, and ground. (It should be understood, however, that in this case the high-speed steel which had heretofore been in general use in the shop was also used in our demonstration.) A large special slide-rule was then made, by means of which the exact speeds and feeds were indicated at which each kind of work could be done in the shortest possible time in this particular lathe. After preparing in this way so that the workman should work according to the new method, one after another, pieces of work were finished in the lathe, corresponding to the work which had been done in our preliminary trials, and the gain in time made through running the machine according to scientific principles ranged from two and one-half times the speed in the slowest instance to nine times the speed in the highest.

The change from rule-of-thumb management to scientific management involves, however, not only a study of what is the proper speed for doing the work and a remodeling of the tools and the implements in the shop, but also a complete change in the mental att.i.tude of all the men in the shop toward their work and toward their employers. The physical improvements in the machines necessary to insure large gains, and the motion, study followed by minute study with a stop-watch of the time in which each workman should do his work, can be made comparatively quickly. But the change in the mental att.i.tude and in the habits of the three hundred or more workmen can be brought about only slowly and through a long series of object-lessons, which finally demonstrates to each man the great advantage which he will gain by heartily cooperating in his every-day work with the men in the management. Within three years, however, in this shop, the output had been more than doubled per man and per machine. The men had been carefully selected and in almost all cases promoted from a lower to a higher order of work, and so instructed by their teachers (the functional foremen) that they were able to earn higher wages than ever before. The average increase in the daily earnings of each man was about 35 per cent., while, at the same time, the sum total of the wages paid for doing a given amount of work was lower than before. This increase in the speed of doing the work, of course, involved a subst.i.tution of the quickest hand methods for the old independent rule-of-thumb methods, and an elaborate a.n.a.lysis of the hand work done by each man. (By hand work is meant such work as depends upon the manual dexterity and speed of a workman, and which is independent of the work done by the machine.) The time saved by scientific hand work was in many cases greater even than that saved in machine-work.

It seems important to fully explain the reason why, with the aid of a slide-rule, and after having studied the art of cutting metals, it was possible for the scientifically equipped man, who had never before seen these particular jobs, and who had never worked on this machine, to do work from two and one-half to nine times as fast as it had been done before by a good mechanic who had spent his whole time for some ten to twelve years in doing this very work upon this particular machine. In a word, this was possible because the art of cutting metals involves a true science of no small magnitude, a science, in fact, so intricate that it is impossible for any machinist who is suited to running a lathe year in and year out either to understand it or to work according to its laws without the help of men who have made this their specialty. Men who are un-familiar with machine-shop work are p.r.o.ne to look upon the manufacture of each piece as a special problem, independent of any other kind of machine-work. They are apt to think, for instance, that the problems connected with making the parts of an engine require the especial study, one may say almost the life study, of a set of engine-making mechanics, and that these problems are entirely different from those which would be met with in machining lathe or planer parts.

In fact, however, a study of those elements which are peculiar either to engine parts or to lathe parts is trifling, compared with the great study of the art, or science, of cutting metals, upon a knowledge of which rests the ability to do really fast machine-work of all kinds.

The real problem is how to remove chips fast from a casting or a forging, and how to make the piece smooth and true in the shortest time, and it matters but little whether the piece being worked upon is part, say, of a marine engine, a printing-press, or an automobile. For this reason, the man with the slide rule, familiar with the science of cutting metals, who had never before seen this particular work, was able completely to distance the skilled mechanic who had made the parts of this machine his specialty for years.

It is true that whenever intelligent and educated men find that the responsibility for making progress in any of the mechanic arts rests with them, instead of upon the workmen who are actually laboring at the trade, that they almost invariably start on the road which leads to the development of a science where, in the past, has existed mere traditional or rule-of-thumb knowledge. When men, whose education has given them the habit of generalizing and everywhere looking for laws, find themselves confronted with a mult.i.tude of problems, such as exist in every trade and which have a general similarity one to another, it is inevitable that they should try to gather these problems into certain logical groups, and then search for some general laws or rules to guide them in their solution. As has been pointed out, however, the underlying principles of the management of "initiative and incentive," that is, the underlying philosophy of this management, necessarily leaves the solution of all of these problems in the hands of each individual workman, while the philosophy of scientific management places their solution in the hands of the management. The workman's whole time is each day taken in actually doing the work with his hands, so that, even if he had the necessary education and habits of generalizing in his thought, he lacks the time and the opportunity for developing these laws, because the study of even a simple law involving say time study requires the cooperation of two men, the one doing the work while the other times him with a stop-watch. And even if the workman were to develop laws where before existed only rule-of-thumb knowledge, his personal interest would lead him almost inevitably to keep his discoveries secret, so that he could, by means of this special knowledge, personally do more work than other men and so obtain higher wages.

Under scientific management, on the other hand, it becomes the duty and also the pleasure of those who are engaged in the management not only to develop laws to replace rule of thumb, but also to teach impartially all of the workmen who are under them the quickest ways of working. The useful results obtained from these laws are always so great that any company can well afford to pay for the time and the experiments needed to develop them. Thus under scientific management exact scientific knowledge and methods are everywhere, sooner or later, sure to replace rule of thumb, whereas under the old type of management working in accordance with scientific laws is an impossibility. The development of the art or science of cutting metals is an apt ill.u.s.tration of this fact. In the fall of 1880, about the time that the writer started to make the experiments above referred to, to determine what const.i.tutes a proper day's work for a laborer, he also obtained the permission of Mr.

William Sellers, the President of the Midvale Steel Company, to make a series of experiments to determine what angles and shapes of tools were the best for cutting steel, and also to try to determine the proper cutting speed for steel. At the time that these experiments were started it was his belief that they would not last longer than six months, and, in fact, if it had been known that a longer period than this would be required, the permission to spend a considerable sum of money in making them would not have been forthcoming.

A 66-inch diameter vertical boring-mill was the first machine used in making these experiments, and large locomotive tires, made out of hard steel of uniform quality, were day after day cut up into chips in gradually learning how to make, shape, and use the cutting tools so that they would do faster work. At the end of six months sufficient practical information had been obtained to far more than repay the cost of materials and wages which had been expended in experimenting. And yet the comparatively small number of experiments which had been made served princ.i.p.ally to make it clear that the actual knowledge attained was but a small fraction of that which still remained to be developed, and which was badly needed by us, in our daily attempt to direct and help the machinists in their tasks.

Experiments in this field were carried on, with occasional interruption, through a period of about 26 years, in the course of which ten different experimental machines were especially fitted up to do this work. Between 30,000 and 50,000 experiments were carefully recorded, and many other experiments were made, of which no record was kept. In studying these laws more than 800,000 pounds of steel and iron was cut up into chips with the experimental tools, and it is estimated that from $150,000 to $200,000 was spent in the investigation.

Work of this character is intensely interesting to any one who has any love for scientific research. For the purpose of this paper, however, it should be fully appreciated that the motive power which kept these experiments going through many years, and which supplied the money and the opportunity for their accomplishment, was not an abstract search after scientific knowledge, but was the very practical fact that we lacked the exact information which was needed every day, in order to help our machinists to do their work in the best way and in the quickest time.

All of these experiments were made to enable us to answer correctly the two questions which face every machinist each time that he does a piece of work in a metal-cutting machine, such as a lathe, planer, drill press, or milling machine. These two questions are:

In order to do the work in the quickest time, At what cutting speed shall I run my machine? and

What feed shall I use?

They sound so simple that they would appear to call for merely the trained judgment of any good mechanic. In fact, however, after working 26 years, it has been found that the answer in every case involves the solution of an intricate mathematical problem, in which the effect of twelve independent variables must be determined.

Each of the twelve following variables has an important effect upon the answer. The figures which are given with each of the variables represent the effect of this element upon the cutting speed.

For example, after the first variable (A) we quote,

"The proportion is as I in the case of semi-hardened steel or chilled iron to 100 in the case of a very soft, low-carbon steel." The meaning of this quotation is that soft steel can be cut 100 times as fast as the hard steel or chilled iron. The ratios which are given, then, after each of these elements, indicate the wide range of judgment which practically every machinist has been called upon to exercise in the past in determining the best speed at which to run the machine and the best feed to use.

(A) The quality of the metal which is to be cut; i.e., its hardness or other qualities which affect the cutting speed. The proportion is as 1 in the case of semi-hardened steel or chilled iron to 100 in the case of very soft, low-carbon steel.

(B) The chemical composition of the steel from which the tool is made, and the heat treatment of the tool. The proportion is as 1 in tools made from tempered carbon steel to 7 in the best high-speed tools.

(C) The thickness of the shaving, or, the thickness of the spiral strip or band of metal which is to be removed by the tool. The proportion is as 1 with thickness of shaving 3/16 of an inch to 3 1/2 with thickness of shaving 1/64 of an inch.

(D) The shape or contour of the cutting edge of the tool. The proportion is as 1 in a thread tool to 6 in a broad-nosed cutting tool.

(E) Whether a copious stream of water or other cooling medium is used on the tool. The proportion is as 1 for tool running dry to 1.41 for tool cooled by a copious stream of water.

(F) The depth of the cut. The proportion is as 1 with 1/2 inch depth of cut to 1.36 with 1/8 inch depth of cut.

(G) The duration of the cut, i.e., the time which a tool must last under pressure of the shaving without being reground. The proportion is as 1 when tool is to be ground every 1 1/2 hours to 1.20 when tool is to be ground every 20 minutes.

(H) The lip and clearance angles of the tool. The proportion is as 1 with lip angle of 68 degrees to 1.023 with lip angle of 61 degrees.

(J) The elasticity of the work and of the tool on account of producing chatter. The proportion is as 1 with tool chattering to 1.15 with tool running smoothly.

(K) The diameter of the casting or forging which is being cut.

(L) The pressure of the chip or shaving upon the cutting surface of the tool.

(M) The pulling power and the speed and feed changes of the machine.

It may seem preposterous to many people that it should have required a period of 26 years to investigate the effect of these twelve variables upon the cutting speed of metals. To those, however, who have had personal experience as experimenters, it will be appreciated that the great difficulty of the problem lies in the fact that it contains so many variable elements. And in fact the great length of time consumed in making each single experiment was caused by the difficulty of holding eleven variables constant and uniform throughout the experiment, while the effect of the twelfth variable was being investigated. Holding the eleven variables constant was far more difficult than the investigation of the twelfth element.

As, one after another, the effect upon the cutting speed of each of these variables was investigated, in order that practical use could be made of this knowledge, it was necessary to find a mathematical formula which expressed in concise form the laws which had been obtained. As examples of the twelve formulae which were developed, the three following are given:

P = 45,000 D 14/15 F 3/4

V = 90/T 1/8

V = 11.9/ (F 0.665(48/3 D) 0.2373 + (2.4 / (18 + 24D))

After these laws had been investigated and the various formulae which mathematically expressed them had been determined, there still remained the difficult task of how to solve one of these complicated mathematical problems quickly enough to make this knowledge available for every-day use. If a good mathematician who had these formula before him were to attempt to get the proper answer (i.e., to get the correct cutting speed and feed by working in the ordinary way) it would take him from two to six hours, say, to solve a single problem; far longer to solve the mathematical problem than would be taken in most cases by the workmen in doing the whole job in his machine. Thus a task of considerable magnitude which faced us was that of finding a quick solution of this problem, and as we made progress in its solution, the whole problem was from time to time presented by the writer to one after another of the noted mathematicians in this country. They were offered any reasonable fee for a rapid, practical method to be used in its solution. Some of these men merely glanced at it; others, for the sake of being courteous, kept it before them for some two or three weeks. They all gave us practically the same answer: that in many cases it was possible to, solve mathematical problems which contained four variables, and in some cases problems with five or six variables, but that it was manifestly impossible to solve a problem containing twelve variables in any other way than by the slow process of "trial and error."

A quick solution was, however, so much of a necessity in our every-day work of running machine-shops, that in spite of the small encouragement received from the mathematicians, we continued at irregular periods, through a term of fifteen years, to give a large amount of time searching for a simple solution. Four or five men at various periods gave practically their whole time to this work, and finally, while we were at the Bethlehem Steel Company, the slide-rule was developed which is ill.u.s.trated on Folder No. 11 of the paper "On the Art of Cutting Metals," and is described in detail in the paper presented by Mr. Carl G. Barth to the American Society of Mechanical Engineers, ent.i.tled "Slide-rules for the Machine-shop, as a part of the Taylor System of Management" (Vol. XXV of The Transactions of the American Society of Mechanical Engineers). By means of this slide-rule, one of these intricate problems can be solved in less than a half minute by any good mechanics whether he understands anything about mathematics or not, thus making available for every-day, practical use the years of experimenting on the art of cutting metals. This is a good ill.u.s.tration of the fact that some way can always be found of making practical, everyday use of complicated scientific data, which appears to be beyond the experience and the range of the technical training of ordinary practical men. These slide-rules have been for years in constant daily use by machinists having no knowledge of mathematics.

A glance at the intricate mathematical formula (see page 109) which represent the laws of cutting metals should clearly show the reason why it is impossible for any machinist, without the aid of these laws, and who depends upon his personal experience, correctly to guess at the answer to the two questions,

Click Like and comment to support us!

RECENTLY UPDATED NOVELS

About The Principles of Scientific Management Part 6 novel

You're reading The Principles of Scientific Management by Author(s): Frederick Winslow Taylor. This novel has been translated and updated at LightNovelsOnl.com and has already 628 views. And it would be great if you choose to read and follow your favorite novel on our website. We promise you that we'll bring you the latest novels, a novel list updates everyday and free. LightNovelsOnl.com is a very smart website for reading novels online, friendly on mobile. If you have any questions, please do not hesitate to contact us at [email protected] or just simply leave your comment so we'll know how to make you happy.