LightNovesOnl.com

Relativity - The Special and General Theory Part 2

Relativity - The Special and General Theory - LightNovelsOnl.com

You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.

Events which are simultaneous with reference to the embankment are not simultaneous with respect to the train, and vice versa (relativity of simultaneity). Every reference-body (co-ordinate system) has its own particular time ; unless we are told the reference-body to which the statement of time refers, there is no meaning in a statement of the time of an event.

Now before the advent of the theory of relativity it had always tacitly been a.s.sumed in physics that the statement of time had an absolute significance, i.e. that it is independent of the state of motion of the body of reference. But we have just seen that this a.s.sumption is incompatible with the most natural definition of simultaneity; if we discard this a.s.sumption, then the conflict between the law of the propagation of light in vacuo and the principle of relativity (developed in Section 7) disappears.

We were led to that conflict by the considerations of Section 6, which are now no longer tenable. In that section we concluded that the man in the carriage, who traverses the distance w per second relative to the carriage, traverses the same distance also with respect to the embankment in each second of time. But, according to the foregoing considerations, the time required by a particular occurrence with respect to the carriage must not be considered equal to the duration of the same occurrence as judged from the embankment (as reference-body). Hence it cannot be contended that the man in walking travels the distance w relative to the railway line in a time which is equal to one second as judged from the embankment.

Moreover, the considerations of Section 6 are based on yet a second a.s.sumption, which, in the light of a strict consideration, appears to be arbitrary, although it was always tacitly made even before the introduction of the theory of relativity.

ON THE RELATIVITY OF THE CONCEPTION OF DISTANCE

Let us consider two particular points on the train * travelling along the embankment with the velocity v, and inquire as to their distance apart. We already know that it is necessary to have a body of reference for the measurement of a distance, with respect to which body the distance can be measured up. It is the simplest plan to use the train itself as reference-body (co-ordinate system). An observer in the train measures the interval by marking off his measuring-rod in a straight line (e.g. along the floor of the carriage) as many times as is necessary to take him from the one marked point to the other.

Then the number which tells us how often the rod has to be laid down is the required distance.

It is a different matter when the distance has to be judged from the railway line. Here the following method suggests itself. If we call A^1 and B^1 the two points on the train whose distance apart is required, then both of these points are moving with the velocity v along the embankment. In the first place we require to determine the points A and B of the embankment which are just being pa.s.sed by the two points A^1 and B^1 at a particular time t -- judged from the embankment. These points A and B of the embankment can be determined by applying the definition of time given in Section 8. The distance between these points A and B is then measured by repeated application of thee measuring-rod along the embankment.

A priori it is by no means certain that this last measurement will supply us with the same result as the first. Thus the length of the train as measured from the embankment may be different from that obtained by measuring in the train itself. This circ.u.mstance leads us to a second objection which must be raised against the apparently obvious consideration of Section 6. Namely, if the man in the carriage covers the distance w in a unit of time -- measured from the train, -- then this distance -- as measured from the embankment -- is not necessarily also equal to w.

Notes

*) e.g. the middle of the first and of the hundredth carriage.

THE LORENTZ TRANSFORMATION

The results of the last three sections show that the apparent incompatibility of the law of propagation of light with the principle of relativity (Section 7) has been derived by means of a consideration which borrowed two unjustifiable hypotheses from cla.s.sical mechanics; these are as follows:

(1) The time-interval (time) between two events is independent of the condition of motion of the body of reference.

(2) The s.p.a.ce-interval (distance) between two points of a rigid body is independent of the condition of motion of the body of reference.

If we drop these hypotheses, then the dilemma of Section 7 disappears, because the theorem of the addition of velocities derived in Section 6 becomes invalid. The possibility presents itself that the law of the propagation of light in vacuo may be compatible with the principle of relativity, and the question arises: How have we to modify the considerations of Section 6 in order to remove the apparent disagreement between these two fundamental results of experience? This question leads to a general one. In the discussion of Section 6 we have to do with places and times relative both to the train and to the embankment. How are we to find the place and time of an event in relation to the train, when we know the place and time of the event with respect to the railway embankment ? Is there a thinkable answer to this question of such a nature that the law of transmission of light in vacuo does not contradict the principle of relativity ? In other words : Can we conceive of a relation between place and time of the individual events relative to both reference-bodies, such that every ray of light possesses the velocity of transmission c relative to the embankment and relative to the train ? This question leads to a quite definite positive answer, and to a perfectly definite transformation law for the s.p.a.ce-time magnitudes of an event when changing over from one body of reference to another.

Before we deal with this, we shall introduce the following incidental consideration. Up to the present we have only considered events taking place along the embankment, which had mathematically to a.s.sume the function of a straight line. In the manner indicated in Section 2 we can imagine this reference-body supplemented laterally and in a vertical direction by means of a framework of rods, so that an event which takes place anywhere can be localised with reference to this framework. Fig. 2 Similarly, we can imagine the train travelling with the velocity v to be continued across the whole of s.p.a.ce, so that every event, no matter how far off it may be, could also be localised with respect to the second framework. Without committing any fundamental error, we can disregard the fact that in reality these frameworks would continually interfere with each other, owing to the impenetrability of solid bodies. In every such framework we imagine three surfaces perpendicular to each other marked out, and designated as " co-ordinate planes " (" co-ordinate system "). A co-ordinate system K then corresponds to the embankment, and a co-ordinate system K' to the train. An event, wherever it may have taken place, would be fixed in s.p.a.ce with respect to K by the three perpendiculars x, y, z on the co-ordinate planes, and with regard to time by a time value t.

Relative to K1, the same event would be fixed in respect of s.p.a.ce and time by corresponding values x1, y1, z1, t1, which of course are not identical with x, y, z, t. It has already been set forth in detail how these magnitudes are to be regarded as results of physical measurements.

Obviously our problem can be exactly formulated in the following manner. What are the values x1, y1, z1, t1, of an event with respect to K1, when the magnitudes x, y, z, t, of the same event with respect to K are given ? The relations must be so chosen that the law of the transmission of light in vacuo is satisfied for one and the same ray of light (and of course for every ray) with respect to K and K1. For the relative orientation in s.p.a.ce of the co-ordinate systems indicated in the diagram ([7]Fig. 2), this problem is solved by means of the equations :

eq. 1: file eq01.gif

y1 = y z1 = z

eq. 2: file eq02.gif

This system of equations is known as the " Lorentz transformation." *

If in place of the law of transmission of light we had taken as our basis the tacit a.s.sumptions of the older mechanics as to the absolute character of times and lengths, then instead of the above we should have obtained the following equations:

x1 = x - vt y1 = y z1 = z t1 = t

This system of equations is often termed the " Galilei transformation." The Galilei transformation can be obtained from the Lorentz transformation by subst.i.tuting an infinitely large value for the velocity of light c in the latter transformation.

Aided by the following ill.u.s.tration, we can readily see that, in accordance with the Lorentz transformation, the law of the transmission of light in vacuo is satisfied both for the reference-body K and for the reference-body K1. A light-signal is sent along the positive x-axis, and this light-stimulus advances in accordance with the equation

x = ct,

i.e. with the velocity c. According to the equations of the Lorentz transformation, this simple relation between x and t involves a relation between x1 and t1. In point of fact, if we subst.i.tute for x the value ct in the first and fourth equations of the Lorentz transformation, we obtain:

eq. 3: file eq03.gif

eq. 4: file eq04.gif

from which, by division, the expression

x1 = ct1

immediately follows. If referred to the system K1, the propagation of light takes place according to this equation. We thus see that the velocity of transmission relative to the reference-body K1 is also equal to c. The same result is obtained for rays of light advancing in any other direction whatsoever. Of cause this is not surprising, since the equations of the Lorentz transformation were derived conformably to this point of view.

Notes

*) A simple derivation of the Lorentz transformation is given in Appendix I.

THE BEHAVIOUR OF MEASURING-RODS AND CLOCKS IN MOTION

Place a metre-rod in the x1-axis of K1 in such a manner that one end (the beginning) coincides with the point x1=0 whilst the other end (the end of the rod) coincides with the point x1=I. What is the length of the metre-rod relatively to the system K? In order to learn this, we need only ask where the beginning of the rod and the end of the rod lie with respect to K at a particular time t of the system K. By means of the first equation of the Lorentz transformation the values of these two points at the time t = 0 can be shown to be

eq. 05a: file eq05a.gif

eq. 05b: file eq05b.gif

the distance between the points being eq. 06 .

But the metre-rod is moving with the velocity v relative to K. It therefore follows that the length of a rigid metre-rod moving in the direction of its length with a velocity v is eq. 06 of a metre.

The rigid rod is thus shorter when in motion than when at rest, and the more quickly it is moving, the shorter is the rod. For the velocity v=c we should have eq. 06a ,

and for stiII greater velocities the square-root becomes imaginary.

Click Like and comment to support us!

RECENTLY UPDATED NOVELS

About Relativity - The Special and General Theory Part 2 novel

You're reading Relativity - The Special and General Theory by Author(s): Albert Einstein. This novel has been translated and updated at LightNovelsOnl.com and has already 783 views. And it would be great if you choose to read and follow your favorite novel on our website. We promise you that we'll bring you the latest novels, a novel list updates everyday and free. LightNovelsOnl.com is a very smart website for reading novels online, friendly on mobile. If you have any questions, please do not hesitate to contact us at [email protected] or just simply leave your comment so we'll know how to make you happy.