The Story of the Heavens - LightNovelsOnl.com
You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.
[Ill.u.s.tration: Fig. 24.--The Moon's Path around the Sun.]
The fact of the moon's revolution around the earth is easily demonstrated by observations of the stars. The rising and setting of our satellite is, of course, due to the rotation of the earth, and this apparent diurnal movement the moon possesses in common with the sun and with the stars. It will, however, be noticed that the moon is continually changing its place among the stars. Even in the course of a single night the displacement will be conspicuous to a careful observer without the aid of a telescope. The moon completes each revolution around the earth in a period of 273 days.
[Ill.u.s.tration: Fig. 25.--The Phases of the Moon.]
In Fig. 24 we have a view of the relative positions of the earth, the sun, and the moon, but it is to be observed that, for the convenience of ill.u.s.tration, we have been obliged to represent the orbit of the moon on a much larger scale than it ought to be in comparison with the distance of the sun. That half of the moon which is turned towards the sun is brilliantly illuminated, and, according as we see more or less of that brilliant half, we say that the moon is more or less full, the several "phases" being visible in the succession shown by the numbers in Fig.
25. A beginner sometimes finds considerable difficulty in understanding how the light on the full moon at night can have been derived from the sun. "Is not," he will say, "the earth in the way? and must it not intercept the sunlight from every object on the other side of the earth to the sun?" A study of Fig. 24 will explain the difficulty. The plane in which the moon revolves does not coincide with the plane in which the earth revolves around the sun. The line in which the plane of the earth's motion is intersected by that of the moon divides the moon's path into two semicircles. We must imagine the moon's path to be tilted a little, so that the upper semicircle is somewhat above the plane of the paper, and the other semicircle below. It thus follows that when the moon is in the position marked full, under the circ.u.mstances shown in the figure, the moon will be just above the line joining the earth and the sun; the sunlight will thus pa.s.s over the earth to the moon, and the moon will be illuminated. At new moon, the moon will be under the line joining the earth and the sun.
As the relative positions of the earth and the sun are changing, it happens twice in each revolution that the sun comes into the position of the line of intersection of the two planes. If this occurs at the time of full moon, the earth lies directly between the moon and the sun; the moon is thus plunged into the shadow of the earth, the light from the sun is intercepted, and we say that the moon is eclipsed. The moon sometimes only partially enters the earth's shadow, in which case the eclipse is a partial one. When, on the other hand, the sun is situated on the line of intersection at the time of new moon, the moon lies directly between the earth and the sun, and the dark body of the moon will then cut off the sunlight from the earth, producing a solar eclipse. Usually only a part of the sun is thus obscured, forming the well-known partial eclipse; if, however, the moon pa.s.s centrally over the sun, then we must have one or other of two very remarkable kinds of eclipse. Sometimes the moon entirely blots out the sun, and thus is produced the sublime spectacle of a total eclipse, which tells us so much as to the nature of the sun, and to which we have already referred in the last chapter. Even when the moon is placed centrally over the sun, a thin rim of sunlight is occasionally seen round the margin of the moon. We then have what is known as an annular eclipse.
It is remarkable that the moon is sometimes able to hide the sun completely, while on other occasions it fails to do so. It happens that the average apparent size of the moon is nearly equal to the average apparent size of the sun, but, owing to the fluctuations in their distances, the actual apparent sizes of both bodies undergo certain changes. On certain occasions the apparent size of the moon is greater than that of the sun. In this case a central pa.s.sage produces a total eclipse; but it may also happen that the apparent size of the sun exceeds that of the moon, in which case a central pa.s.sage can only produce an annular eclipse.
[Ill.u.s.tration: Fig. 26.--Form of the Earth's Shadow, showing the Penumbra, or partially shaded region. Within the Penumbra, the Moon is visible; in the Shadow it is nearly invisible.]
There are hardly any more interesting celestial phenomena than the different descriptions of eclipses. The almanac will always give timely notice of the occurrence, and the more striking features can be observed without a telescope. In an eclipse of the moon (Fig. 26) it is interesting to note the moment when the black shadow is first detected, to watch its gradual encroachment over the bright surface of the moon, to follow it, in case the eclipse is total, until there is only a thin crescent of moonlight left, and to watch the final extinction of that crescent when the whole moon is plunged into the shadow. But now a spectacle of great interest and beauty is often manifested; for though the moon is so hidden behind the earth that not a single direct ray of the sunlight could reach its surface, yet we often find that the moon remains visible, and, indeed, actually glows with a copper-coloured hue bright enough to permit several of the markings on the surface to be discerned.
This illumination of the moon even in the depth of a total eclipse is due to the sunbeams which have just grazed the edge of the earth. In doing so they have become bent by the refraction of the atmosphere, and have thus been turned inwards into the shadow. Such beams have pa.s.sed through a prodigious thickness of the earth's atmosphere, and in this long journey through hundreds of miles of air they have become tinged with a ruddy or copper-like hue. Nor is this property of our atmosphere an unfamiliar one. The sun both at sunrise and at sunset glows with a light which is much more ruddy than the beams it dispenses at noonday.
But at sunset or at sunrise the rays which reach our eyes have much more of our atmosphere to penetrate than they have at noon, and accordingly the atmosphere imparts to them that ruddy colour so characteristic and often so lovely. If the spectrum of the sun when close to the horizon is examined it is seen to be filled with numerous dark lines and bands situated chiefly towards the blue and violet end. These are caused by the increased absorption which the light suffers in the atmosphere, and give rise to the preponderating red light on the sun under such conditions. In the case of the eclipsed moon, the sunbeams have to take an atmospheric journey more than double as long as that at sunrise or sunset, and hence the ruddy glow of the eclipsed moon may be accounted for.
The almanacs give the full particulars of each eclipse that happens in the corresponding year. These predictions are reliable, because astronomers have been carefully observing the moon for ages, and have learned from these observations not only how the moon moves at present, but also how it will move for ages to come. The actual calculations are so complicated that we cannot here discuss them. There is, however, one leading principle about eclipses which is so simple that we must refer to it. The eclipses occurring this year have no very obvious relation to the eclipses that occurred last year, or to those that will occur next year. Yet, when we take a more extended view of the sequence of these phenomena, a very definite principle becomes manifest. If we observe all the eclipses in a period of eighteen years, or nineteen years, then we can predict, with at least an approximation to the truth, all the future eclipses for many years. It is only necessary to recollect that in 6,585-1/3 days after one eclipse a nearly similar eclipse follows. For instance, a beautiful eclipse of the moon occurred on the 5th of December, 1881. If we count back 6,585 days from that date, or, that is, eighteen years and eleven days, we come to November 24th, 1863, and a similar eclipse of the moon took place then. Again, there were four eclipses in the year 1881. If we add 6,585-1/3 days to the date of each eclipse, it will give the dates of all the four eclipses in the year 1899. It was this rule which enabled the ancient astronomers to predict the recurrence of eclipses, at a time when the motions of the moon were not understood nearly so well as they now are.
During a long voyage, and perhaps in critical circ.u.mstances, the moon will often render invaluable information to the sailor. To navigate a s.h.i.+p, suppose from Liverpool to China, the captain must frequently determine the precise position which his s.h.i.+p then occupies. If he could not do this, he would never find his way across the trackless ocean.
Observations of the sun give him his lat.i.tude and tell him his local time, but the captain further requires to know the Greenwich time before he can place his finger at a point of the chart and say, "My s.h.i.+p is here." To ascertain the Greenwich time the s.h.i.+p carries a chronometer which has been carefully rated before starting, and, as a precaution, two or three chronometers are usually provided to guard against the risk of error. An unknown error of a minute in the chronometer might perhaps lead the vessel fifteen miles from its proper course.
[Ill.u.s.tration: PLATE VI.
CHART OF THE MOON'S SURFACE.]
[Ill.u.s.tration: Fig. 27.--Key to Chart of the Moon (Plate VI.).]
It is important to have the means of testing the chronometers during the progress of the voyage; and it would be a great convenience if every captain, when he wished, could actually consult some infallible standard of Greenwich time. We want, in fact, a Greenwich clock which may be visible over the whole globe. There is such a clock; and, like any other clock, it has a face on which certain marks are made, and a hand which travels round that face. The great clock at Westminster shrinks into insignificance when compared with the mighty clock which the captain uses for setting his chronometer. The face of this stupendous dial is the face of the heavens. The numbers engraved on the face of a clock are replaced by the twinkling stars; while the hand which moves over the dial is the beautiful moon herself. When the captain desires to test his chronometer, he measures the distance of the moon from a neighbouring star. For example, he may see that the moon is three degrees from the star Regulus. In the Nautical Almanac he finds the Greenwich time at which the moon was three degrees from Regulus.
Comparing this with the indications of the chronometer, he finds the required correction.
There is one widely-credited myth about the moon which must be regarded as devoid of foundation. The idea that our satellite and the weather bear some relation has no doubt been entertained by high authority, and appears to be an article in the belief of many an excellent mariner.
Careful comparison between the state of the weather and the phases of the moon has, however, quite discredited the notion that any connection of the kind does really exist.
We often notice large blank s.p.a.ces on maps of Africa and of Australia which indicate our ignorance of parts of the interior of those great continents. We can find no such blank s.p.a.ces in the map of the moon.
Astronomers know the surface of the moon better than geographers know the interior of Africa. Every spot on the face of the moon which is as large as an English parish has been mapped, and all the more important objects have been named.
A general map of the moon is shown in Plate VI. It has been based upon drawings made with small telescopes, and it gives an entire view of that side of our satellite which is presented towards us. The moon is shown as it appears in an astronomical telescope, which inverts everything, so that the south is at the top and the north at the bottom (to show objects upright a telescope requires an additional pair of lenses in the eye-piece, and as this diminishes the amount of light reaching the eye they are dispensed with in astronomical telescopes). We can see on the map some of the characteristic features of lunar scenery. Those dark regions so conspicuous in the ordinary full moon are easily recognised on the map. They were thought to be seas by astronomers before the days of telescopes, and indeed the name "Mare" is still retained, though it is obvious that they contain no water at present. The map also shows certain ridges or elevated portions, and when we apply measurement to these objects we learn that they must be mighty mountain ranges. But the most striking features on the moon are those ring-like objects which are scattered over the surface in profusion. These are known as the lunar craters.
To facilitate reference to the chief points of interest we have arranged an index map (Fig. 27) which will give a clue to the names of the several objects depicted upon the plate. The so-called seas are represented by capital letters; so that A is the Mare Crisium, and H the Ocea.n.u.s Procellarum. The ranges of mountains are indicated by small letters; thus a on the index is the site of the so-called Caucasus mountains, and similarly the Apennines are denoted by _c_. The numerous craters are distinguished by numbers; for example, the feature on the map corresponding to 20 on the index is the crater designated Ptolemy.
A. Mare Crisium.
B. Mare Foecunditatis.
C. Mare Tranquillitatis.
D. Mare Serenitatis.
E. Mare Imbrium.
F. Sinus Iridum.
G. Mare Vaporum.
H. Ocea.n.u.s Procellarum.
I. Mare Humorum.
J. Mare Nubium.
K. Mare Nectaris.
_a._ Caucasus.
_b._ Alps.
_c._ Apennines.
_d._ Carpathians.
_f._ Cordilleras & D'Alembert mountains.
_g._ Rook mountains.
_h._ Doerfel mountains.
_i._ Leibnitz mountains.
1. Posidonius.
2. Linne.
3. Aristotle.
4. Great Valley of the Alps.
5. Aristillus.
6. Autolycus.
7. Archimedes.
8. Plato.
9. Eratosthenes.
10. Copernicus.
11. Kepler.
12. Aristarchus.
13. Grimaldi.
14. Ga.s.sendi.
15. Schickard.
16. Wargentin.
17. Clavius.
18. Tycho.
19. Alphonsus.
20. Ptolemy.
21. Catharina.
22. Cyrillus.
23. Theophilus.
24. Petavius.
25. Hyginus.
26. Triesnecker.
In every geographical atlas there is a map showing the two hemispheres of the earth, the eastern and the western. In the case of the moon we can only give a map of one hemisphere, for the simple reason that the moon always turns the same side towards us, and accordingly we never get a view of the other side. This is caused by the interesting circ.u.mstance that the moon takes exactly the same time to turn once round its own axis as it takes to go once round the earth. The rotation is, however, performed with uniform speed, while the moon does not move in its...o...b..t with a perfectly uniform velocity (_see_ Chapter IV.). The consequence is that we now get a slight glimpse round the east limb, and now a similar glimpse round the west limb, as if the moon were shaking its head very gently at us. But it is only an insignificant margin of the far side of the moon which this _libration_ permits us to examine.
Lunar objects are well suited for observation when the sunlight falls upon them in such a manner as to exhibit strongly contrasted lights and shadows. It is impossible to observe the moon satisfactorily when it is full, for then no conspicuous shadows are cast. The most opportune moment for seeing any particular lunar object is when it lies just at the illuminated side of the boundary between light and shade, for then the features are brought out with exquisite distinctness.
Plate VII.[7] gives an ill.u.s.tration of lunar scenery, the object represented being known to astronomers by the name of Triesnecker. The district included is only a very small fraction of the entire surface of the moon, yet the actual area is very considerable, embracing as it does many hundreds of square miles. We see in it various ranges of lunar mountains, while the central object in the picture is one of those remarkable lunar craters which we meet with so frequently in every lunar landscape. This crater is about twenty miles in diameter, and it has a lofty mountain in the centre, the peak of which is just illuminated by the rising sun in that phase of our satellite which is represented in the picture.
A typical view of a lunar crater is shown in Plate VIII. This is, no doubt, a somewhat imaginary sketch. The point of view from which the artist is supposed to have taken the picture is one quite unattainable by terrestrial astronomers, yet there can be little doubt that it is a fair representation of objects on the moon. We should, however, recollect the scale on which it is drawn. The vast crater must be many miles across, and the mountain at its centre must be thousands of feet high. The telescope will, even at its best, only show the moon as well as we could see it with the unaided eye if it were 250 miles away instead of being 240,000. We must not, therefore, expect to see any details on the moon even with the finest telescopes, unless they were coa.r.s.e enough to be visible at a distance of 250 miles. England from such a point of view would only show London as a coloured spot, in contrast with the general surface of the country.