LightNovesOnl.com

Theory And Practice, Applied To The Cultivation Of The Cucumber In The Winter Season Part 1

Theory And Practice, Applied To The Cultivation Of The Cucumber In The Winter Season - LightNovelsOnl.com

You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.

Theory and Practice, Applied to the Cultivation of the Cuc.u.mber in the Winter Season.

by Thomas Moore.

PREFACE.

This little treatise is intended as an inducement to young Gardeners especially, to seek for the reasons on which the operations of their daily practice are founded, and by which they are regulated. This announcement is here made, in order to prevent any reader from supposing that the author has unduly estimated the opinions of those who have benefited by a long course of application and experience. As, however, there can be no doubt that there is much to be learned, so is there but little question that there is also much to be unlearned, in the present state of the Science of Horticulture; and these pages are offered without hesitation, as a mite among the acc.u.mulating ma.s.s of available information on gardening subjects; and in the hope that some amongst those who are seeking to extend their knowledge, may at least be stimulated by their perusal, if they are not otherwise directly benefited.

The great truths which it is the object of this treatise to impress, are these: that the ultimate success of gardening operations does not depend on the performance of any part of them, at a particular time, or in a particular or even superior manner, but rather upon the supplying, in a natural manner, as far as possible, _all the conditions_ which are necessary to the nutrition and perpetuation of plants; and, that it is within the open pathway of Science, and not the bye-ways of empiricism, that the finger-post of direction should be sought.



Royal Botanic Garden, Regent's Park,

March 2nd, 1844.

TREATISE.

CHAP. I.

INTRODUCTORY REMARKS.

The Cuc.u.mber, _Cuc.u.mis sativa_, is supposed to be a native of the East Indies; but like many other of our culinary plants, the real stations which it naturally has occupied, are involved in obscurity: in habit it is a trailing herb, with thick fleshy stems, broadly palmate leaves, and yellow axillary monaecious flowers. In the natural arrangement of the vegetable kingdom, the genus of which it forms part, ranks in the first grand cla.s.s, _Vasculares_, or those plants which are furnished with vessels, and woody fibre; in the sub-cla.s.s _Calyciflorae_, or those in which the stamens are perigynous; and in the order _Cucurbitaceae_, or that group, of which the genus _Cucurbita_, or Gourd family is the type.

The affinities of this order, are chiefly with _Loasaceae_, and _Onagraceae_; with the former it agrees in its inferior unilocular fruit, having a parietal placentae, and with the latter, in its definite perigynous stamens, single style, and exalb.u.minous seeds. It has also some affinity with _Pa.s.sifloraceae_, and _Papayaceae_, in the nature of the fruit, and with _Aristolochiaceae_, in its twining habit, and inferior ovarium. M. Auguste St. Hiliare, also regards it as being related to _Campanulaceae_, in the perigynous insertion of the stamens, the single style with several stigmas, the inferior ovarium, and in the quinary division of the floral envelope, in connection with the ternary division of the fruit.

The properties of the plants comprised in this natural family, are not numerous; a bitter laxative quality pervades many of them, a familiar example of which is the resinous substance called Colycinthine, the production of the Colocynth gourd, in which the active purgative principle is concentrated, rendering it drastic, and irritating. Among our native plants the roots of _Bryonia dioica_, in common with the perennial roots of all the plants in the order, possess these purgative properties. On the other hand, the seeds are sweet, yielding an abundant supply of oil; and it may be worthy of remark, that they never partake of the properties of the pulp with which they are surrounded in the fruit.

The Cuc.u.mber does not possess the properties common to the order, in very powerful degree; its fruit is however too cold for many persons, causing flatulency, diarrhoea, and even cholera; by others, it may be eaten with avidity, without producing any injurious effects.

The names by which the Cuc.u.mber is recognised by the Hindoos, are _Ketimon_, and _Timou_. In the French, it is called _Concombre_; in the German, _Gurke_; and in the Italian, _Citriuolo_. As a cultivated plant, it is of nearly equal antiquity with the Vine; being mentioned by the writer of the Pentateuch, as being cultivated extensively in Egypt, above 3000 years since.

The cultivation of this plant, and the production of fine fruit at an early season, is an object of emulation among gardeners of the present day; and from this cause, many important improvements in the mode of its cultivation have been effected. The vast increase of means, arising from an acquaintance with powerful agents, formerly unknown, which are available by the present and rising races of gardeners, enable them to secure the same important results which cost their predecessors much both of labour and anxiety, with a comparatively small amount of the former, and a degree of certainty at which they could never arrive. The agents which an enlightened age has brought under controul, are indeed powerful engines, which require much skill in their adaptation and management; but the knowledge necessary to effect this, is so firmly and inseparably connected with the first principles of cultivation, that an acquaintance with these, will at all times supply a safe and unerring guide to their application.

It is to a.s.sist the young gardener in this application of principles, to the growth of the Cuc.u.mber in the winter season, that these pages are designed; and of those who may differ from the opinions which are here expressed, it is only required that they should receive a calm and deliberate consideration--a consideration unbia.s.sed by prejudice, and unmixed with any of that feverish excitement after novelties, which with gardeners, as well as with all other cla.s.ses of society, is becoming far too prevalent, and intense.

CHAP. II.

ON THE STRUCTURES ADAPTED FOR THE GROWTH OF CUc.u.mBERS.

I will preface the following remarks on the structures adapted for the growth of Cuc.u.mbers, by stating, that a forcing house, a pit, and a common frame, present the means of bringing this fruit to its perfection, equally, one with the other, provided that a course of cultivation suitable to the structure, is followed out; the comparative merits of each, depend not so much on the nature of the results which may be obtained by adopting them, as on the facilities they afford for the attainment of those results.

The use of the common frame, and the ordinary hotbed of fermenting manure, nevertheless involves these difficulties:--the fermentation is liable to become excessive, and that in a very rapid manner, and also to decline as rapidly; the heat, when declining, cannot be speedily restored in unpropitious weather; it is materially checked in its action, by that particular state of the weather, which renders its efficient action most essential; it involves almost an infinitude of labour; and after all, it is uncertain in its action: when such difficulties as these, are overcome, Cuc.u.mbers can be grown to perfection, on dung beds, a.s.sisted by the common garden frame and sash.

The brick pit, when heated by fermenting manure, presents difficulties of the same nature with the preceeding, though in a less powerful degree: but when these structures are heated by means of hot water, in any of its various modes of application, there need be no irregularity, nor uncertainty in its action; because the supply of the elements of vegetable developement, and of the agents by whose aid they are applied, may, to a very great extent, go on uninterruptedly.

A forcing house, whilst it secures all the advantages which are presented by a pit, combines with these, some important points which are peculiarly its own: by adopting a pit, we provide a structure of which Cuc.u.mbers manifest their approval, by thriving equally as well as in their more ancient location on a dung bed; but further than this, a pit enables us to dispense with much of the labour, and all the filth, and the uncertainty which are consequent on the use of fermenting manure as a means of keeping up the temperature in which they are grown. In a small forcing house, besides these advantages being secured, all the operations of care and culture, can be performed just when they become necessary, without exposing the tender foliage of plants which have been submitted to an artificially elevated temperature, to the chilling influence of cold air, which is admitted whenever the sashes of an ordinary frame or of a pit, are opened, in order to bestow these necessary attentions. It may be urged that a dung bed has still the advantage, on the ground of economy; but when a fair calculation is made of labour and loss or anxiety on the one hand, and of duration on the other, such an a.s.sumption, will be quite untenable. Neatness, convenience, certainty, and economy, are the princ.i.p.al points of advantage which are gained by the adoption of pits heated by means of hot water, over those of a structure, depending for its supply of heat, on the aid of fermenting ma.s.ses; whilst the attainment of a still greater degree both of convenience, and of certainty, which may be secured by cultivation in forcing houses, point out at once the advantages which render such houses, preferable to pits.

The application of the gutter system of heating, was not long since thought to be an improvement of great importance, and there can be no question but that it affords a means of regulating the moisture of the atmosphere of hothouses, in conjunction with the temperature, which prior to its introduction had not been attained; and as such, it is worthy of extensive adoption: it requires however some judgement in its adaptation to particular structures, and to render, it suitable, to effect any particular object for which it may be employed.

The tank system as a means of applying bottom heat, employed either in conjunction with the gutters, or with ordinary piping, to supply heat to the atmosphere, is the most important advance which has. .h.i.therto been made towards supplying the wants of those plants, which require such peculiar aid; and with reference to the Cuc.u.mber, it may be regarded as furnis.h.i.+ng a new era in its cultivation.

The importance of bottom heat in the culture of tender plants, has always been well known by its practical effects. The mean temperature of the soil, at a slight distance below the surface, is universally above that of the superinc.u.mbent air; and consequently some degree of bottom heat is always supplied to plants, in a state of nature. Naturally, by means of subterraneous heat, and also by the absorption of the sun's rays during the time they are forcibly directed towards the earth, it possesses the means whereby any material degree of cold at the roots of plants is prevented; and when the soil is acted on by the unveiled sun of an eastern sky, we cannot but feel certain, that even a considerable amount of heat must be experienced: hence arises the importance of taking advantage of every ray of sun which our climate affords, when the culture of the Cuc.u.mber, or of any native of warmer lat.i.tudes, is attempted out of doors in this country; and also of using every possibly available means of increasing rather than diminis.h.i.+ng the temperature of the soil: and hence too, in forcing not only the Cuc.u.mber, but also every other plant which requires to be submitted to a confined atmosphere, and an elevated temperature, arises the necessity of providing such a degree of warmth at the root, as may tend to keep its vital powers in a vigorous state of action; it will effect this, by acting in conjunction with moisture, as a solvent of the food which is primarily contained in the soil in a solid form, but can only be taken up by the capillary action of the spongioles of the roots, when converted into a fluid state. The science of Chemistry has taught us that the ingredients composing the soil, act on, and dissolve, and combine with each other in various ways, sometimes being simply dissolved and held in solution, and at other times, entering into new combinations, and forming new compounds; but in all cases, the natural agents, heat and moisture, are necessary to produce these results, and to present to the tender roots of plants, food so duly prepared, as to be fit for their a.s.similation. Warmth in the soil, acts beneficially also, by preventing the sudden or undue interruption of the excitability of plants growing in it, which would be likely to result from the lowering of the temperature of the plants by evaporation, were it not for the action of the antagonist force, existing in and exercised by the heated soil, which heat, is communicated to, and absorbed by the plants.

It may be regarded as an established and universal rule, that all plants require the soil, and the atmosphere in which they are cultivated, to correspond with the natural circ.u.mstances under which they flourish; and as it has been repeatedly ascertained that the soil is naturally a degree or two above the temperature of the atmosphere, we have certain and unerring data for the application of bottom heat, and no more powerful evidence than this can be desired, to condemn at once the application of a _very powerful degree of heat_, at the roots of plants.

The importance of bottom heat in the culture of tender plants, being a practical fact established beyond question, another consideration arises as to the best means of producing it, and of regulating its application.

Various substances and materials have been submitted to a process of fermentation, and so employed to effect it: stable manure, tanner's bark, and the leaves of trees, are among the princ.i.p.al of these materials, and either of them will supply just what the plants require, as truly as these wants can be supplied by any other means; but from their very nature, they are violent, and fluctuating, and ephemeral in their action, and setting aside the labour which the employment of them necessarily involves, we have in these particulars, the special points in which the tank system of applying bottom heat far excels them: it is uniform, and constant, in its action; there need be no apprehension of the soil becoming overheated, for the source whence it derives its warmth ought never to boil; neither need there be any fear of its decline, or of a want of power, for when once thoroughly heated, a body of water will part with it in such a manner, that a very little attention to the fire, and a very little expenditure of fuel, will maintain its temperature for an almost incredible length of time; and as to power, it never should for a moment form a question, because a powerful degree of bottom heat ought never to be applied: a close attention for one or two hours during the twenty four which form a day, will maintain any apparatus in an effective state of action, if it is properly erected. How different is this, to what has been in days now past! when in rigorous weather, with the heat of his dung bed declining, the cultivator knew that at the peril of his crop, he scarcely dared to attempt to revive it, without involving a more serious because an accelerated evil; at any rate, if at an immense sacrifice of labour, his dung casings were replenished piece by piece, he knew too well, that often many days would elapse, before their action would be efficient and satisfactory, unless indeed an unlimited supply of materials, were in a constant state of preparation. By means of the tank, a fire could be lighted up, and the required effect produced in as many hours, as days would have been formerly required.

What has been already advanced, tends to the conclusion, that small forcing houses are preferable, and in the end more economical than pits and dung beds; and that the tank as a means of supplying bottom heat, is preferable to the use of fermenting materials; _because the results in each case, are more perfectly under controul_. Whilst on this part of the subject, I may be allowed to mention an error which is somewhat prevalent: We frequently hear of the humid nature of the heat given off by hot water pipes, in comparison with that derived from such appliances, as a flue; it is not unfrequently a.s.serted, that the heat thus derived is so moist, so genial, so peculiarly adapted to plants: there can be no doubt but that the heat thus obtained is infinitely preferable to that obtained through the medium of flues, generally speaking; but its superiority consists rather in its purity, its freeness from noxious ga.s.ses, than in its possessing a greater degree of moisture. Heat--that is--caloric, is the same, whatever may be the medium by which it may be conducted; and in the case of hot water pipes, they give off that which has been conducted to them by the water, directly from the fire, the water acting as a mere conductor; it is difficult to conceive any thing more thoroughly devoid of moisture than the heat thus communicated: let any one who doubts this, place a damp cloth on a series of hot water pipes when in action, and the result will soon work conviction. With these general remarks, I will proceed to describe the kind of structure which I regard as being peculiarly adapted to the growth of Cuc.u.mbers; and notice some of the conditions which it is necessary to keep in view: the engraving on the next page, represents such a structure.

The aspect of the Cuc.u.mber house, should be nearly S.S.E; or in other words--it should be so regulated between the points south and east, that whilst the rays of the sun will be admitted as fully and as early as possible in the morning, there may be no obstruction offered to their more powerful action as that body approaches the meridian. In the growth of all tender plants, light and sun heat are required during the winter months as well as in summer, and there can be no greater error as regards the erection of structures devoted to such purposes, than to provide for their admitting the direct rays of the sun in the earlier part of the day, at the expense of refracting and thereby weakening, to a greater degree than is really unavoidable, the power of the noon-tide rays of that invigorating and life-sustaining agent: during the summer months, though plants then require both light and sun heat, yet the case is different; the sun's rays have then much greater power, and it is found that their influence is sufficient, without at all times admitting them directly on the plants growing in these artificial atmospheres.

[Ill.u.s.tration]

The position of the Cuc.u.mber house, with reference to the ground line, must be determined by local circ.u.mstances; if the situation and sub-soil be dry, it may be carried below the surface in the manner represented in the annexed engraving, of which (_a_) is the ground line, (_b_) the pathway, and (_c_) the lowest point excavated: the same course may be adopted if the soil, though not naturally so dry as this, can be rendered so by thorough drainage; but when the ground does not admit of perfect drainage, the structure must be sufficiently elevated to avoid the risk of injury from the dampness of the locality.

The angle of elevation is not, as it is sometimes a.s.serted to be, a point of indifference, though mathematical accuracy is certainly by no means required: in the annexed engraving, the angle of the roof is about 55, this provides for the admission of the sun's rays in the winter months, when his position is comparatively low in the horizon, to a much greater extent than could take place if a more ordinary slope were adopted. A still more elevated pitch would doubtless effect this object in a still more perfect manner; but would not be equally applicable to the requirements from a permanent structure, which would be wanted for summer as well as winter use.

A reference to the sketch, will at once shew the general nature of the internal arrangements. There should be a tank (_d_) supported by brick piers (_p_) in which a circulation of heated water would supply a genial warmth to the soil above, and to the roots of the plants growing in the soil; this tank should be heated by a small boiler, conveniently placed with reference to adjacent arrangements; a series of iron pipes (_e_) attached to the same boiler, would supply the requisite heat to the atmosphere. It may perhaps be thought that the application of the gutter system of heating would in this case be preferable; but as there would be a perfect command of moisture, as will be explained further on, it is desirable to have dry heat also, under controul, and this can be better effected by means of the pipes than by adopting the gutter plan of heating. I cannot in this place forbear protesting against the limited surface of piping generally employed in heating plant structures; what is thought to be just enough to maintain a given temperature, is usually after minute calculation, the quant.i.ty which is made use of, and the consequence is, that under adverse circ.u.mstances, the apparatus is necessarily worked at its highest pitch; and I believe that the application of heat in this form, whether it be by means of an hot water apparatus, or by a common flue, is most inimical to the plants submitted thereto. The admission of air, is a point which as far as I am aware, has never been effected in the manner represented in the sketch: it would be thus effected;--a series of apertures (_f_) should be provided at intervals along the front wall, which would externally be closed by small sliding shutters, and would communicate internally with a chamber (_g_) formed between the front wall and the side of the tank; this chamber would also communicate, by a series of openings, (_h_) with the interior s.p.a.ce above the water in the tank, and from this s.p.a.ce, through the covering of the tank, tubes (_m_), also placed at intervals, would be carried up through the soil, close to the side of the wall; these tubes should be furnished with caps or valves, so as so admit of the communication being stopped at any time. In applying this to the admission of air, we must not loose sight of a series of ventilators, (_i_), placed in the back wall of the house, which are of precisely the same nature and construction as the apertures (_f_), already spoken of. I shall have occasion hereafter, to notice the admission of air, but it will be well in this place, to explain the action of the plan proposed for that purpose: when it is judged that a change of the internal volume of air is requisite, the ventilators (_i_) are to be opened, which admits of a portion of the rarified air to pa.s.s off; the ventilators (_f_) are also to be opened, and by means of the action of these ventilators on each other, a portion of external air is taken in; this enters the chamber (_g_), which is warmed by its contiguity to the tank, and here becomes partially rarified, and rises to the top of the chamber; the apertures (_h_) admit it to the interior of the tank, where it becomes not only thoroughly warmed, but also imbibes a degree of moisture proportionate to the degree in which it becomes heated, and thence it enters the house by the tubes or shafts already spoken of. The advantages of warming and moistening the air thus admitted, are very important ones; for when either a cold or dry state, of the atmosphere prevails, its influence is very injurious to plants in these confined situations: cold raw air, when it comes in contact with the tender foliage of the plants, has the effect of chilling the sap in its progress through their tissue, and thus lessening their excitability, when it should be increased; whilst dry air acts as an incessant drain upon the vegetable juices, which it abstracts through the stomates and pores of the leaves and stems. When cold air is admitted to any position where it can unite with caloric, and not in an equal ratio with moisture, it necessarily becomes arid, and in that state it eagerly combines with moisture in any form with which it can come in contact therewith; and consequently if cold air is admitted to a plant structure, where it can have the means of combining with heat, faster than with moisture, it would be brought into this arid state, and would supply its voracious appet.i.te, by abstracting the juices of the plant. It is a very important question how far this state of things is connected with many of the diseases as they are called, to which plants are subject; for my own part, I believe it to have a very considerable influence in the production of many of them. A shallow bed of soil (_k_), is all that would be required; for in the winter season, there is nothing gained by encouraging a very luxuriant and gross state of growth: the composition of this soil will be noticed hereafter: beneath it, and resting on the top of the tank, should be placed a layer of coa.r.s.e open rubble, not less than six inches in thickness; and among this rubble by means of tubes (_n_), placed at intervals along the bed, I would occasionally pour considerable quant.i.ties of water, in order to maintain a due regulation of moisture in, and throughout the soil, among which the vapour arising from the water would ultimately rise. Beneath the tank a s.p.a.ce (_o_), might be provided, which would serve admirably either for the cultivation of Mushrooms, or the forcing of Rhubarb, or Sea Kale.

Transverse part.i.tions should be introduced into the bed of soil, so as to divide the roots of each plant from those of its neighbours: this arrangement will admit of a complete succession of plants being maintained, by the removal of those which have become old and debilitated, and the subst.i.tution of young and vigorous ones; and this obstruction of the roots, will not be injurious, for the Cuc.u.mber does not by any means require to be permitted to extend its roots at random, but will readily submit itself to any rational regimen, with regard to the area from whence it is permitted to extract its food. A portion of soil sufficient to support one or two plants, could by this arrangement be renewed as occasion might require, and the roots of the contiguous plants would suffer no injury from the operation. The pathway of the house, should be paved so as to admit of its being occasionally washed and cleansed.

It will be found to be highly economical in reference to the consumption of fuel, to provide the structure with the means of being covered at night. Shutters of light frame-work, covered with any waterproof material, would be found to answer the purpose admirably; they should be elevated a few inches from the surface of the gla.s.s, and they should be arranged so as to confine a body of air, which acting as a very slow conductor of heat, would serve to prevent that incessant drain upon the temperature of the internal atmosphere, which takes place when the material employed is in contact with the gla.s.s, as well as when coverings are altogether absent. This would not be the only advantage, for as the covering would to a great extent prevent the radiation of heat from the internal atmosphere, so would it also prevent the necessity of the application of so powerful a degree of fire heat at night; and thus the plants would be permitted to enjoy that natural season of repose so essential to their well being, instead of being forced into growth by reason of a high temperature kept up, solely for the purpose of obviating the external cold.

CHAP. III.

ON THE PROPAGATION OF THE CUc.u.mBER.

Cuc.u.mbers are propagated by cuttings, by layers, and by seeds; the two former of these methods being frequently practised by those who have conveniences to keep their plants growing throughout the year; the latter being adopted either through choice or necessity, by the majority of cultivators, or those whose means will not enable them, even if they desired it, to keep up continually a successional growth.

Propagation by cuttings has many advantages to recommend it, especially when viewed in connection with the production of winter fruit. The plants raised by this mode of treatment, in comparison with those raised from seeds, are less gross and succulent in their nature, and more subdued in their manner of growth; whether it may be that having mature and perfectly formed parts, they are enabled to a.s.similate their food more rapidly, than young and imperfectly formed plants can do; or whether it is owing to any difference in the balance between the roots and leaves, which latter organs, in cuttings, and the former, in seedling plants, may be regarded as predominant, does not appear quite evident, probably the effect depends partly on each of these supposed causes. They are moreover, sooner in arriving at a fruit-bearing state, by reason of a universal natural law, by which the inflorescence and fructification of a plant becomes more general and perfect, in proportion as the plant attains proximity to its perfect developement; which effect, is owing to the more perfect elaboration and preparation of the materials, which when so prepared, furnish the means of perfecting the organs of reproduction. For the same reason, the operation of budding a portion of a seedling fruit tree, on a matured stem, is practised, in order to accelerate its fruitfulness; which result generally follows, in consequence of the difference existing in the nature of the food elaborated by the mature plant, and that deposited by one in an infant state. Thus it is also, that cuttings of flowering plants generally, are far sooner in arriving at a blooming state, than seedling plants of the same species: flowers and fruit being formed only by the aid of the perfectly elaborated sap; which is taken up into the system, and a.s.similated in the plant, in proportion to the number of healthy and mature leaves, in a full state of action: during the younger stages of growth, the crude material imbibed from the soil, is only partially elaborated, and in this state, is only converted into food suitable and destined to increase the foliaceous organs; but when these latter are in full and vigorous action, a supply of matter, not increased in quant.i.ty, but enriched in quality, becomes laid up in the store-house and structure of the plants; and it is by means of this matter, aided by the natural agents, that the nature of the developement is changed from being simply that of the organs of nutrition, to that of the more perfect and important organs of reproduction. Besides the precocity of plants propagated by cuttings, there is also another advantage resulting from the practice, and that is the preservation of particularly desirable varieties; the Cuc.u.mber is a plant which readily admits of hybridization, and although the result of this is sometimes to give rise to superior varieties, yet if impregnation is permitted to take place promiscuously, the bad qualities of particular varieties, are as likely to be combined in the succeeding race, as the good and desirable ones: this renders it important that the fruit which are preserved for seed, should have been carefully watched and protected when in blossom, from the reach of insects; which often effect the requisite union, in consequence of the pollen adhering to their bodies, and thus being brought into contact with the stigma. I need scarcely to say, that where only one variety is grown in any particular structure, the chances of admixture are less numerous.

The manner in which the operation of propagation by cutting is performed, is very simple: the tops of healthy growing shoots are taken off, at about two or three joints in length; they are then planted in deep pots, which are about half filled with light earth, such as decayed vegetable matter, and then covered by laying a piece of gla.s.s on the top of the pot; a simple and effective protection is thus formed, the sides of the pot acting as a partial shade, the gla.s.s admitting light sufficiently abundant to secure the action of the leaves, and maintaining a calm and moist atmosphere: the pots are to be plunged in a gentle bottom heat, and the cuttings will soon become rooted; after which they may be treated as established plants.

Propagation by layers, is another method similar to the last, of which it is a mere modification; and those points which mark the superiority of the one, are equally applicable in the case of the other. The operation may be performed in various ways: thus the branches may be layered at once into the soil, when these are trained close to its surface, and they will thus grow on with renewed vigour: when required for removal to other positions, they may be layered into pots of light soil, in doing which, a convenient branch may be brought down, secured firmly at a joint to the soil, and slightly covered therewith, when it will soon become rooted: another plan, is, to suspend in convenient places, pots having large holes beneath; through these holes, the points of growing shoots are introduced, and the pots having a little moss in the bottom, are then lightly filled with vegetable mould: they may also be propagated, by enveloping a joint of a growing shoot lightly with moss; the moss should be kept continually moist, and roots will soon be emitted into it, and when enough are produced, the plant may be detached.

Click Like and comment to support us!

RECENTLY UPDATED NOVELS

About Theory And Practice, Applied To The Cultivation Of The Cucumber In The Winter Season Part 1 novel

You're reading Theory And Practice, Applied To The Cultivation Of The Cucumber In The Winter Season by Author(s): Thomas Moore. This novel has been translated and updated at LightNovelsOnl.com and has already 649 views. And it would be great if you choose to read and follow your favorite novel on our website. We promise you that we'll bring you the latest novels, a novel list updates everyday and free. LightNovelsOnl.com is a very smart website for reading novels online, friendly on mobile. If you have any questions, please do not hesitate to contact us at [email protected] or just simply leave your comment so we'll know how to make you happy.