Fragments of science - LightNovelsOnl.com
You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.
By diffusing the shock of the particle, such substances practically destroy the local erosive power. The hand can bear, without inconvenience, a sand-shower which would pulverise gla.s.s. Etchings executed on gla.s.s with suitable kinds of ink are accurately worked out by the sandblast. In fact, within certain limits, the harder the surface, the greater is the concentration of the shock, and the more effectual is the erosion. It is not necessary that the sand should be the harder substance of the two; corundum, for example, is much harder than quartz; still, quartz-sand can not only depolish, but actually blow a hole through a plate of corundum. Nay, gla.s.s may be depolished by the impact of fine shot; the grains in this case bruising the gla.s.s, before they have time to flatten and turn their energy into heat.
And here, in pa.s.sing, we may tie together one or two apparently unrelated facts. Supposing you turn on, at the lower part of a house, a c.o.c.k which is fed by a pipe from a cistern at the top of the house, the column of water, from the cistern downwards, is set in motion. By turning off the c.o.c.k, this motion is stopped; and, when the turning off is very sudden, the pipe, if not strong, may be burst by the internal impact of the water. By distributing the turning of the c.o.c.k over half a second of time, the shock and danger of rupture may be entirely avoided. We have here an example of the concentration of energy in time. The sand-blast ill.u.s.trates the concentration of energy in s.p.a.ce. The action of flint and steel is an ill.u.s.tration of the same principle. The heat required to generate the spark is intense; and the mechanical action, being moderate, must, to produce fire, be in the highest degree concentrated. This concentration is secured by the collision of hard substances. Calc-spar will not supply the place of flint, nor lead the place of steel, in the production of fire by collision. With the softer substances, the total heat produced may be greater than with the hard ones, but, to produce the spark, the heat must be intensely localised.
We can, however, go far beyond the mere depolis.h.i.+ng of gla.s.s; indeed I have already said that quartz-sand can wear a hole through corundum.
This leads me to express my acknowledgments to General Tilghman, who is the inventor of the sand-Blast. [Footnote: The absorbent power, if I may use the phrase, exerted by the industrial arts in the United States, is forcibly ill.u.s.trated by the rapid transfer of men like Mr. Tilghman from the life of the soldier to that of the civilian.
General McClellan, now a civil engineer, whom I had the honour of frequently meeting in New York, is a most eminent example of the same kind. At the end of the war, indeed, a million and a half of men were thus drawn, in an astonis.h.i.+ngly short time, from military to civil life.] To his spontaneous kindness I am indebted for some beautiful ill.u.s.trations of his process. In one thick plate of gla.s.s a figure has been worked out to a depth of three eighths of an inch. A second plate, seven eighths of an inch thick, is entirely perforated. In a circular plate of marble, nearly half an inch thick, open work of most intricate and elaborate description has been executed. It would probably take many days to perform this work by any ordinary process; with the sand-blast it was accomplished in an hour. So much for the strength of the blast; its delicacy is ill.u.s.trated by this beautiful example of line engraving, etched on gla.s.s by means of the Blast.
This power of erosion, so strikingly displayed when sand is urged by air, renders us better able to conceive its action when urged by water. The erosive power of a river is vastly augmented by the solid matter carried along with it. Sand or pebbles, caught in a river vortex, can wear away the hardest rock potholes' and deep cylindrical shafts being thus produced. An extraordinary instance of this kind of erosion is to be seen in the Val Tournanche, above the village of this name. The gorge at Handeck has been thus cut out. Such waterfalls were once frequent in the valleys of Switzerland; for hardly any valley is without one or more transverse barriers of resisting material, over which the river flowing through the valley once fell as a cataract. Near Pontresina, in the Engadin, there is such a case; a hard gneiss being there worn away to form a gorge, through which the river from the Morteratsch glacier rushes. The barrier of the Kirchet above Meyringen is also a case in point. Behind it was a lake, derived from the glacier of the Aar, and over the barrier the lake poured its excess of water. Here the rock, being limestone, was in part dissolved; but added to this we had the action of the sand and gravel carried along by the water, which, on striking the rock, chipped it away like the particles of the sand-Blast. Thus, by solution and mechanical erosion, the great chasm of the Finsteraarschlucht was formed. It is demonstrable that the water which flows at the bottoms of such deep fissures once flowed at the level of their present edges, and tumbled down the lower faces of the barriers. Almost every valley in Switzerland furnishes examples of this kind; the untenable hypothesis of earthquakes, once so readily resorted to in accounting for these gorges, being now for the most part abandoned. To produce the Canons of Western America, no other cause is needed than the integration of effects individually infinitesimal.
And now we come to Niagara. Soon after Europeans had taken possession of the country, the conviction appears to have arisen that the deep channel of the river Niagara below the falls had been excavated by the cataract. In Mr. Bakewell's 'Introduction to Geology,' the prevalence of this belief has been referred to. It is expressed thus by Professor Joseph Henry in the 'Transactions of the Albany Inst.i.tute:'
[Footnote: Quoted by Bakewell.] 'In viewing the position of the falls, and the features of the country round, it is impossible not to be impressed with the idea that this great natural raceway has been formed by the continued action of the irresistible Niagara, and that the falls, beginning at Lewiston, have, in the course of ages, worn back the rocky strata to their present site.' The same view is advocated by Sir Charles Lyell, by Mr. Hall, by M. Aga.s.siz, by Professor Ramsay, indeed by most of those who have inspected the place.
A connected image of the origin and progress of the cataract is easily obtained. Walking northward from the village of Niagara Falls by the side of the river, we have to our left the deep and comparatively narrow gorge, through which the Niagara flows. The bounding cliffs of this gorge are from 300 to 350 feet high. We reach the whirlpool, trend to the north-east, and after a little time gradually resume our northward course. Finally, at about seven miles from the present falls, we come to the edge of a declivity, which informs us that we have been hitherto walking on table-land. At some hundreds of feet below us is a comparatively level plain, which stretches to Lake Ontario. The declivity marks the end of the precipitous gorge of the Niagara. Here the river escapes from its steep mural boundaries, and in a widened bed pursues its way to the lake which finally receives its waters.
The fact that in historic times, even within the memory of man, the fall has sensibly receded, prompts the question, How far has this recession gone? At what point did the ledge which thus continually creeps backwards begin its retrograde course? To minds disciplined in such researches the answer has been, and will be--At the precipitous declivity which crossed the Niagara from Lewiston on the American to Queenston on the Canadian side. Over this transverse barrier the united affluents of all the upper lakes once poured their waters, and here the work of erosion began. The dam, moreover, was demonstrably of sufficient height to cause the river above it to submerge Goat Island; and this would perfectly account for the finding by Sir Charles Lyell, Mr. Hall, and others, in the sand and gravel of the island, the same fluviatile sh.e.l.ls as are now found in the Niagara River higher up. It would also account for those deposits along the sides of the river, the discovery of which enabled Lyell, Hall, and Ramsay to reduce to demonstration the popular belief that the Niagara once flowed through a shallow valley.
The physics of the problem of excavation, which I made clear to my mind before quitting Niagara, are revealed by a close inspection of the present Horseshoe Fall. We see evidently that the greatest weight of water bends over the very apex of the Horseshoe. In a pa.s.sage in his excellent chapter on Niagara Falls, Mr. Hall alludes to this fact.
Here we have the most copious and the most violent whirling of the shattered liquid; here the most powerful eddies recoil against the shale. From this portion of the fall, indeed, the spray sometimes rises without solution of continuity to the region of clouds, becoming gradually more attenuated, and pa.s.sing finally through the condition of true cloud into invisible vapour, which is sometimes reprecipitated higher up. All the phenomena point distinctly to the centre of the river as the place of greatest mechanical energy, and from the centre the vigour of the fall gradually dies away towards the sides. The Horseshoe form, with the concavity facing downwards, is an obvious and necessary consequence of this action. Right along the middle of the river the apex of the curve pushes its way backwards, cutting along the centre a deep and comparatively narrow groove, and draining the sides as it pa.s.ses them. [Footnote: In the discourse the excavation of the centre and drainage of the sides action was ill.u.s.trated by a model devised by my a.s.sistant, Mr. John Cottrell.] Hence the remarkable discrepancy between the widths of the Niagara above and below the Horseshoe. All along its course, from Lewiston Heights to its present position, the form of the fall was probably that of a horseshoe; for this is merely the expression of the greater depth, and consequently greater excavating power, of the centre of the river. The gorge, moreover, varies in width, as the depth of the centre of the ancient river varied, being narrowest where that depth was greatest.
The vast comparative erosive energy of the Horseshoe Fall comes strikingly into view when it and the American Fall are compared together. The American branch of the river is cut at a right angle by the gorge of the Niagara. Here the Horseshoe Fall was the real excavator. It cut the rock, and formed the precipice, over which the American Fall tumbles. But since its formation, the erosive action of the American Fall has been almost nil, while the Horseshoe has cut its way for 600 yards across the end of Goat Island, and is now doubling back to excavate its channel parallel to the length of the island.
This point, which impressed me forcibly, has not, I have just learned, escaped the acute observation of Professor Ramsay. [Footnote: His words are: 'Where the body of water is small in the American Fall, the edge has only receded a few yards (where most eroded) during the time that the Canadian Fall has receded from the north corner of Goat Island to the innermost curve of the Horseshoe Fall.'--Quarterly Journal of Geological Society, May 1859.] The river bends; the Horseshoe immediately accommodates itself to the bending, and will follow implicitly the direction of the deepest water in the upper stream. The flexures of the gorge are determined by those of the river channel above it. Were the Niagara centre above the fall sinuous, the gorge would obediently follow its sinuosities. Once suggested, no doubt geographers will be able to point out many examples of this action. The Zambesi is thought to present a great difficulty to the erosion theory, because of the sinuosity of the chasm below the Victoria Falls. But, a.s.suming the basalt to be of tolerably uniform texture, had the river been examined before the formation of this sinuous channel, the present zigzag course of the gorge below the fall could, I am persuaded, have been predicted, while the sounding of the present river would enable us to predict the course to be pursued by the erosion in the future.
But not only has the Niagara River cut the gorge; it has carried away the chips of its own workshop. The shale, being probably crumbled, is easily carried away. But at the base of the fall we find the huge boulders already described, and by some means or other these are removed down the river. The ice which fills the gorge in winter, and which grapples with the boulders, has been regarded as the transporting agent. Probably it is so to some extent. But erosion acts without ceasing on the ab.u.t.ting points of the boulders, thus withdrawing their support and urging them gradually down the river.
Solution also does its portion of the work. That solid matter is carried down is proved by the difference of depth between the Niagara River and Lake Ontario, where the river enters it. The depth falls from 72 feet to 20 feet, in consequence of the deposition of solid matter caused by the diminished motion of the river. [Footnote: Near the mouth of the gorge at Queenston, the depth, according to the Admiralty Chart, is 180 feet; well within the gorge it is 132 feet.]
The annexed highly instructive map has been reduced from one published in Mr. Hall's 'Geology of New York.' It is based on surveys executed in 1842, by Messrs. Gibson and Evershed. The ragged edge of the American Fall north of Goat Island marks the amount of erosion which it has been able to accomplish, while the Horseshoe Fall was cutting its way southward across the end of Goat Island to its present position. The American Fall is 168 feet high, a precipice cut down, not by itself, but by the Horseshoe Fall. The latter in 1842 was 159 feet high, and, as shown by the map, is already turning eastward, to excavate its gorge along the centre of the upper river. P is the apex of the Horseshoe, and T marks the site of the Terrapin Tower, with the promontory adjacent, round which I was conducted by Conroy. Probably since 1842 the Horseshoe has worked back beyond the position here a.s.signed to it.
In conclusion, we may say a word regarding the proximate future of Niagara. At the rate of excavation a.s.signed to it by Sir Charles Lyell, namely, a foot a year, five thousand years or so will carry the Horseshoe Fall far higher than Goat Island. As the gorge recedes it will drain, as it has. .h.i.therto done, the banks right and left of it, thus leaving a nearly level terrace between Goat Island and the edge of the gorge. Higher up it will totally drain the American branch of the river; the channel of which in due time will become cultivable land. The American Fall will then be transformed into a dry precipice, forming a simple continuation of the cliffy boundary of the Niagara gorge. At the place occupied by the fall at this moment we shall have the gorge enclosing a right angle, a second whirlpool being the consequence. To those who visit Niagara a few millenniums hence I leave the verification of this prediction. All that can be said is, that if the causes now in action continue to act, it will prove itself literally true.
Fig. 6.
POSTSCRIPT.
A year or so after I had quitted the United States, a man sixty years of age, while engaged in painting one of the bridges which connect Goat Island with the Three Sisters, slipped through the rails of the bridge into the rapids, and was carried impetuously towards the Horseshoe Fall. He was urged against a rock which rose above the water, and with the grasp of desperation he clung to it. The population of the village of Niagara Falls was soon upon the island, and ropes were brought, but there was none to use them. In the midst of the excitement, a tall powerful young fellow was observed making his way silently through the crowd. He reached a rope; selected from the bystanders a number of men, and placed one end of the rope in their hands. The other end he fastened round himself, and choosing a point considerably above that to which the man clung, he plunged into the rapids. He was carried violently downwards, but he caught the rock, secured the old painter and saved him. Newspapers from all parts of the Union poured in upon me, describing this gallant act of my guide Conroy.
VIII. THE PARALLEL ROADS OF GLEN ROY.
[Footnote: A discourse delivered at the Royal Inst.i.tution of Great Britain on June 9, 1876.]
THE first published allusion to the Parallel Roads of Glen Roy occurs in the appendix to the third volume of Pennant's 'Tour in Scotland,' a work published in 1776. 'In the face of these hills,' says this writer, 'both sides of the glen, there are three roads at small distances from each other and directly opposite on each side. These roads have been measured in the complete parts of them, and found to be 26 paces of a man 5 feet 10 inches high. The two highest are pretty near each other, about 50 yards, and the lowest double that distance from the nearest to it. They are carried along the sides of the glen with the utmost regularity, nearly as exact as drawn with a line of rule and compa.s.s.'
The correct heights of the three roads of Glen Roy are respectively 1150, 1070, and 860 feet above the sea. Hence a vertical distance of 80 feet separates the two highest, while the lowest road is 210 feet below the middle one.
These 'roads' are usually shelves or terraces formed in the yielding drift which here covers the slopes of the mountains. They are all sensibly horizontal and therefore parallel. Pennant accepted as reasonable the explanation of them given by the country people in his time. They thought that the roads 'were designed for the chase, and that the terraces were made after the spots were cleared in lines from wood, in order to tempt the animals into the open paths after they were rouzed, in order that they might come within reach of the bowmen who might conceal themselves in the woods above and below.'
In these attempts of 'the country people' we have an ill.u.s.tration of that impulse to which all scientific knowledge is due--the desire to know the causes of things; and it is a matter of surprise that in the case of the parallel roads, with their weird appearance challenging enquiry, this impulse did not make itself more rapidly and energetically felt. Their remoteness may perhaps account for the fact that until the year 1817 no systematic description of them, and no scientific attempt at an explanation of them, appeared. In that year Dr. MacCulloch, who was then President of the Geological Society, presented to that Society a memoir, in which the roads were discussed, and p.r.o.nounced to be the margins of lakes once embosomed in Glen Roy.
Why there should be three roads, or why the lakes should stand at these particular levels, was left unexplained.
To Dr. MacCulloch succeeded a man, possibly not so learned as a geologist, but obviously fitted by nature to grapple with her facts and to put them in their proper setting. I refer to Sir Thomas d.i.c.k-Lauder, who presented to the Royal Society of Edinburgh, on the 2nd of March, 1818, his paper on the Parallel Roads of Glen. Roy. In looking over the literature of this subject, which is now copious, it is interesting to observe the differentiation of minds, and to single out those who went by a kind of instinct to the core of the question, from those who erred in it, or who learnedly occupied themselves with its a.n.a.logies, adjuncts, and details. There is no man, in my opinion, connected with the history of the subject, who has shown, in relation to it, this spirit of penetration, this force of scientific insight, more conspicuously than Sir Thomas d.i.c.k-Lauder. Two distinct mental processes are involved in the treatment of such a question. Firstly, the faithful and sufficient observation of the data; and secondly, that higher mental process in which the constructive imagination comes into play, connecting the separate facts of observation with their common cause, and weaving them into an organic whole. In neither of these requirements did Sir Thomas d.i.c.k-Lauder fail.
Adjacent to Glen Roy is a valley called Glen Gluoy, along the sides of which ran a single shelf, or terrace, formed obviously in the same manner as the parallel roads of Glen Roy. The two shelves on the opposing sides of the glen were at precisely the same level, and d.i.c.k-Lauder wished to see whether, and how, they became united at the head of the glen. He followed the shelves into the recesses of the mountains. The bottom of the valley, as it rose, came ever nearer to them, until finally, at the head of Glen Gluoy, he reached a col, or watershed, of precisely the same elevation as the road which swept round the glen.
The correct height of this col is 1170 feet above the sea; that is to say, 20 feet above the highest road in Glen Roy.
From this col a lateral branch-valley--Glen Turrit--led down to Glen Roy. Our explorer descended from the col to the highest road of the latter glen, and pursued it exactly as he had pursued the road in Glen Gluoy. For a time it belted the mountain sides at a considerable height above the bottom of the valley; but this rose as he proceeded, coming ever nearer to the highest shelf, until finally he reached a col, or watershed, looking into Glen Spey, and of precisely the same elevation as the highest road of Glen Roy.
He then dropped down to the lowest of these roads, and followed it towards the mouth of the glen. Its elevation above the bottom of the valley gradually increased; not because the shelf rose, but because it remained level while the valley sloped downwards. He found this lowest road doubling round the hills at the mouth of Glen Roy, and running along the sides of the mountains which flank Glen Spean. He followed it eastwards.
PARALLEL ROADS OF GLEN ROY.
After a Sketch by Sir Thomas d.i.c.k-Lauder.
The bottom of the Spean Valley, like the others, gradually rose, and therefore gradually approached the road on the adjacent mountain-side.
He came to Loch Laggan, the surface of which rose almost to the level of the road, and beyond the head of this lake he found, as in the other two cases, a col, or watershed, at Makul, of exactly the same level as the single road in Glen Spean, which, it will be remembered, is a continuation of the lowest road in Glen Roy.
Here we have a series of facts of obvious significance as regards the solution of this problem. The effort of the mind to form a coherent image from such facts may be compared with the effort of the eyes to cause the pictures of a stereoscope to coalesce. For a time we exercise a certain strain, the object remaining vague and indistinct.
Suddenly its various parts seem to run together, the object starting forth in clear and definite relief. Such, I take it, was the effect of his ponderings upon the mind of Sir Thomas d.i.c.k-Lauder. His solution was this: Taking all their features into account, he was convinced that water only could have produced the terraces. But how had the water been collected? He saw clearly that, supposing the mouth of Glen Gluoy to be stopped by a barrier sufficiently high, if the waters from the mountains flanking the glen were allowed to collect, they would form behind the barrier a lake, the surface of which would gradually rise until it reached the level of the col at the head of the glen. The rising would then cease; the superfluous water of Glen Gluoy discharging itself over the col into Glen Roy. As long as the barrier stopping the mouth of Glen Gluoy continued high enough, we should have in that glen a lake at the precise level of its shelf, which lake, acting upon the loose drift of the flanking mountains, would form the shelf revealed by observation.
So much for Glen Gluoy. But suppose the mouth of Glen Roy also stopped by a similar barrier. Behind it also the water from the adjacent mountains would collect. The surface of the lake thus formed would gradually rise, until it had reached the level of the col which divides Glen Roy from Glen Spey. Here the rising of the lake would cease; its superabundant water being poured over the col into the valley of the Spey. This state of things would continue as long as a sufficiently high barrier remained at the mouth of Glen Roy. The lake thus dammed in, with its surface at the level of the highest parallel road, would act, as in Glen Gluoy, upon the friable drift overspreading the mountains, and would form the highest road or terrace of Glen Roy.
And now let us suppose the barrier to be so far removed from the mouth of Glen Roy as to establish a connection between it and the upper part of Glen Spean, while the lower part of the latter glen still continued to be blocked up. Upper Glen Spean and Glen Roy would then be occupied by a continuous lake, the level of which would obviously be determined by the col at the head of Loch Laggan. The water in Glen Roy would sink from the level it had previously maintained, to the level of its new place of escape. This new lake-surface would correspond exactly with the lowest parallel road, and it would form that road by its action upon the drift of the adjacent mountains.
In presence of the observed facts, this solution commends itself strongly to the scientific mind. The question next occurs, What was the character of the a.s.sumed barrier which stopped the glens? There are at the present moment vast ma.s.ses of detritus in certain portions of Glen Spean, and of such detritus Sir Thomas d.i.c.k-Lauder imagined his barriers to have been formed. By some unknown convulsion, this detritus had been heaped up. But, once given, and once granted that it was subsequently removed in the manner indicated, the single road of Glen Gluoy and the highest and lowest roads of Glen Roy would be explained in a satisfactory manner.
To account for the second or middle road of Glen Roy, Sir Thomas d.i.c.k-Lauder invoked a new agency. He supposed that at a certain point in the breaking down or waste of his dam, a halt occurred, the barrier holding its ground at a particular level sufficiently long to dam a lake rising to the height of, and forming the second road. This point of weakness was at once detected by Mr. Darwin, and adduced by him as proving that the levels of the cols did not const.i.tute an essential feature in the phenomena of the parallel roads. Though not destroyed, Sir Thomas d.i.c.k-Lauder's theory was seriously shaken by this argument, and it became a point of capital importance, if the facts permitted, to remove such source of weakness. This was done in 1847 by Mr. David Milne, now Mr. Milne-Home. On walking up Glen Roy from Roy Bridge, we pa.s.s the mouth of a lateral glen, called Glen Glaster, running eastward from Glen Roy. There is nothing in this lateral glen to attract attention, or to suggest that it could have any conspicuous influence in the production of the parallel roads. Hence, probably, the failure of Sir Thomas d.i.c.k-Lauder to notice it. But Mr.
Milne-Home entered this glen, on the northern side of which the middle and lowest roads are fairly shown. The princ.i.p.al stream running through the glen turns at a certain point northwards and loses itself among hills too high to offer any outlet. But another branch of the glen turns to the south-east; and, following up this branch, Mr.
Milne-Home reached a col, or watershed, of the precise level of the second Glen Roy road. When the barrier blocking the glens had been so far removed as to open this col, the water in Glen Roy would sink to the level of the second road. A new lake of diminished depth would be thus formed, the surplus water of which would escape over the Glen Glaster col into Glen Spean. The margin of this new lake, acting upon the detrital matter, would form the second road. The theory of Sir Thomas d.i.c.k-Lauder, as regards the part played by the cols, was re-riveted by this new and unexpected discovery.
I have referred to Mr. Darwin, whose powerful mind swayed for a time the convictions of the scientific world in relation to this question.
His notion was--and it is a notion which very naturally presents itself--that the parallel roads were formed by the sea; that this whole region was once submerged and subsequently upheaved; that there were pauses in the process of upheaval, during which these glens const.i.tuted so many fiords, on the sides of which the parallel terraces were formed. This theory will not bear close criticism; nor is it now maintained by Mr. Darwin himself. It would not account for the sea being 20 feet higher in Glen Gluoy than in Glen Roy. It would not account for the absence of the second and third Glen Roy roads from Glen Gluoy, where the mountain flanks are quite as impressionable as in Glen Roy. It would not account for the absence of the shelves from the other mountains in the neighbourhood, all of which 'would have been clasped by the sea had the sea been there. Here then, and no doubt elsewhere, Mr. Darwin has shown himself to be fallible; but here, as elsewhere, he has shown himself equal to that discipline of surrender to evidence which girds his intellect with such una.s.sailable moral strength.
But, granting the significance of Sir Thomas d.i.c.k-Lauder's facts, and the reasonableness, on the whole, of the views which he has founded on them, they will not bear examination in detail. No such barriers of detritus as he a.s.sumed could have existed without leaving traces behind them; but there is no trace left. There is detritus enough in Glen Spean, but not where it is wanted. The two highest parallel roads stop abruptly at different points near the mouth of Glen Roy, but no remnant of the barrier against which they ab.u.t.ted is to be seen. It might be urged that the subsequent invasion of the valley by glaciers has swept the detritus away; but there have been no glaciers in these valleys since the disappearance of the lakes. Professor Geikie has favoured me with a drawing of the Glen Spean 'road' near the entrance to Glen Trieg. The road forms a shelf round a great mound of detritus which, had a glacier followed the formation of the shelf, must have been cleared away. Taking all the circ.u.mstances into account, you may, I think, with safety dismiss the detrital barrier as incompetent to account for the present condition of Glen Gluoy and Glen Roy.
Hypotheses in science, though apparently transcending experience, are in reality experience modified by scientific thought and pushed into an ultra experiential region. At the time that he wrote, Sir Thomas d.i.c.k-Lauder could not possibly have discerned the cause subsequently a.s.signed for the blockage of these glens. A knowledge of the action of ancient glaciers was the necessary antecedent to the new explanation, and experience of this nature was not possessed by the distinguished writer just mentioned. The extension of Swiss glaciers far beyond their present limits, was first made known by a Swiss engineer named Venetz, who established, by the marks they had left behind them, their former existence in places which they had long forsaken. The subject of glacier extension was subsequently followed up with distinguished success by Charpentier, Studer, and others. With characteristic vigour Aga.s.siz grappled with it, extending his observations far beyond the domain of Switzerland. He came to this country in 1840, and found in various places indubitable marks of ancient glacier action. England, Scotland, Wales, and Ireland he proved to have once given birth to glaciers. He visited Glen Roy, surveyed the surrounding neighbourhood, and p.r.o.nounced, as a consequence of his investigation, the barriers which stopped the glens and produced the parallel roads to have been barriers of ice. To Mr.
Jamieson, above all others, we are indebted for the thorough testing and confirmation of this theory.
And let me here say that Aga.s.siz is only too likely to be misrated and misjudged by those who, though accurate within a limited sphere, fail to grasp in their totality the motive powers invoked in scientific investigation. True he lacked mechanical precision, but he abounded in that force and freshness of the scientific imagination which in some sciences, and probably in some stages of all sciences, are essential to the creator of knowledge. To Aga.s.siz was given, not the art of the refiner, but the instinct of the discoverer, and the strength of the delver who brings ore from the recesses of the mine.
That ore may contain its share of dross, but it also contains the precious metal which gives employment to the refiner, and without which his occupation would depart.
Let us dwell for a moment upon this subject of ancient glaciers. Under a flask containing water, in which a thermometer is immersed, is placed a Bunsen's lamp. The water is heated, reaches a temperature of 212, and then begins to boil. The rise of the thermometer then ceases, although heat continues to be poured by the lamp into the water. What becomes of that heat? We know that it is consumed in the molecular work of vaporization. In the experiment here arranged, the steam pa.s.ses from the flask through a tube into a second vessel kept at a low temperature. Here it is condensed, and indeed congealed to ice, the second vessel being plunged in a mixture cold enough to freeze the water. As a result of the process we obtain a ma.s.s of ice.
That ice has an origin very ant.i.thetical to its own character. Though cold, it is the child of heat. If we removed the lamp, there would be no steam, and if there were no steam there would be no ice. The mere cold of the mixture surrounding the second vessel would not produce ice. The cold must have the proper material to work upon; and this material--aqueous vapour--is, as we here see, the direct product of heat.
It is now, I suppose, fifteen or sixteen years since I found myself conversing with an ill.u.s.trious philosopher regarding that glacial epoch which the researches of Aga.s.siz and others had revealed. This profoundly thoughtful man maintained the fixed opinion that, at a certain stage in the history of the solar system, the sun's radiation had suffered diminution, the glacial epoch being a consequence of this solar chill. The celebrated French mathematician Poisson had another theory. Astronomers have shown that the solar system moves through s.p.a.ce, and 'the temperature of s.p.a.ce' is a familiar expression with scientific men. It was considered probable by Poisson that our system, during its motion, had traversed portions of s.p.a.ce of different temperatures; and that, during its pa.s.sage through one of the colder regions of the universe, the glacial epoch occurred.
Notions such as these were more or less current everywhere not many years ago, and I therefore thought it worth while to show how incomplete they were. Suppose the temperature of our planet to be reduced, by the subsidence of solar heat, the cold of s.p.a.ce, or any other cause, say one hundred degrees. Four-and-twenty hours of such a chill would bring down as, snow nearly all the moisture of our atmosphere. But this would not produce a glacial epoch. Such an epoch would require the long-continued generation of the material from which the ice of glaciers is derived. Mountain snow, the nutriment of glaciers, is derived from aqueous vapour raised mainly from the tropical ocean by the sun. The solar fire is as necessary a factor in the process as our lamp in the experiment referred to a moment ago.
Nothing is easier than to calculate the exact amount of heat expended by the sun in the production of a glacier. It would, as I have elsewhere shown, [Footnote: 'Heat a Mode of Motion,' fifth edition, chap. vi: Forms of Water, sections 55 and 56.] raise a quant.i.ty of cast iron five times the weight of the glacier not only to a white heat, but to its point of fusion. If, as I have already urged, instead of being filled with ice, the valleys of the Alps were filled with white-hot metal, of quintuple the ma.s.s of the present glaciers, it is the heat, and not the cold, that would arrest our attention and solicit our explanation. The process of glacier making is obviously one of distillation, in which the fire of the sun, which generates the vapour, plays as essential a part as the cold of the mountains which condenses it. [Footnote: In Lyell's excellent 'Principles of Geology,'