LightNovesOnl.com

Darwiniana Part 14

Darwiniana - LightNovelsOnl.com

You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.

The reply to these questions, which was almost universally received fifty years ago, was that animals and plants were created such as they are; and that their present distribution, at any rate so far as terrestrial organisms are concerned, has been effected by the migration of their ancestors from the region in which the ark stranded after the subsidence of the deluge. It is true that the geologists had drawn attention to a good many tolerably serious difficulties in the way of the diluvial part of this hypothesis, no less than to the supposition that the work of creation had occupied only a brief s.p.a.ce of time. But even those, such as Lyell, who most strenuously argued in favour of the sufficiency of natural causes for the production of the phenomena of the inorganic world, held stoutly by the hypothesis of creation in the case of those of the world of life.

For persons who were unable to feel satisfied with the fas.h.i.+onable doctrine, there remained only two alternatives--the hypothesis of spontaneous generation, and that of descent with modification. The former was simply the creative hypothesis with the creator left out; the latter had already been propounded by De Maillet and Erasmus Darwin, among others; and, later, systematically expounded by Lamarck. But in the eyes of the naturalist of the "Beagle" (and, probably, in those of most sober thinkers), the advocates of trans.m.u.tation had done the doctrine they expounded more harm than good.

Darwin's opinion of the scientific value of the "Zoonomia" has already been mentioned. His verdict on Lamarck is given in the following pa.s.sage of a letter to Lyell (March, 1863):--

"Lastly, you refer repeatedly to my view as a modification of Lamarck's doctrine of development and progression. If this is your deliberate opinion there is nothing to be said, but it does not seem so to me. Plato, Buffon, my grandfather, before Lamarck and others, propounded the _obvious_ view that if species were not created separately they must have descended from other species, and I can see nothing else in common between the "Origin" and Lamarck. I believe this way of putting the case is very injurious to its acceptance, as it implies necessary progression, and closely connects Wallace's and my views with what I consider, after two deliberate readings, as a wretched book, and one from which (I well remember to my surprise) I gained nothing."

"But," adds Darwin with a little touch of banter, "I know you rank it higher, which is curious, as it did not in the least shake your belief."

(III. p. 14; see also p. 16, "to me it was an absolutely useless book.")

Unable to find any satisfactory theory of the process of descent with modification in the works of his predecessors, Darwin proceeded to lay the foundations of his own views independently; and he naturally turned, in the first place, to the only certainly known examples of descent with modification, namely, those which are presented by domestic animals and cultivated plants. He devoted himself to the study of these cases with a thoroughness to which none of his predecessors even remotely approximated; and he very soon had his reward in the discovery "that selection was the keystone of man's success in making useful races of animals and plants."

(I. p. 83.)

This was the first step in Darwin's progress, though its immediate result was to bring him face to face with a great difficulty. "But how selection could be applied to organisms living in a state of nature remained for some time a mystery to me." (I. p. 83.)

The key to this mystery was furnished by the accidental perusal of the famous essay of Malthus "On Population" in the autumn of 1838. The necessary result of unrestricted multiplication is compet.i.tion for the means of existence. The success of one compet.i.tor involves the failure of the rest, that is, their extinction; and this "selection" is dependent on the better adaptation of the successful compet.i.tor to the conditions of the compet.i.tion. Variation occurs under natural, no less than under artificial, conditions. Unrestricted multiplication implies the compet.i.tion of varieties and the selection of those which are relatively best adapted to the conditions.

Neither Erasmus Darwin, nor Lamarck, had any inkling of the possibility of this process of "natural selection"; and though it had been foreshadowed by Wells in 1813, and more fully stated by Matthew in 1831, the speculations of the latter writer remained unknown to naturalists until after the publication of the "Origin of Species."

Darwin found in the doctrine of the selection of favourable variations by natural causes, which thus presented itself to his mind, not merely a probable theory of the origin of the diverse species of living forms, but that explanation of the phenomena of adaptation, which previous speculations had utterly failed to give. The process of natural selection is, in fact, dependent on adaptation--it is all one, whether one says that the compet.i.tor which survives is the "fittest" or the "best adapted." And it was a perfectly fair deduction that even the most complicated adaptations might result from the summation of a long series of simple favourable variations.

Darwin notes as a serious defect in the first sketch of his theory that he had omitted to consider one very important problem, the solution of which did not occur to him till some time afterwards. "This problem is the tendency in organic beings descended from the same stock to diverge in character as they become modified.... The solution, as I believe, is that the modified offspring of all dominant and increasing forms tend to become adapted to many and highly diversified places in the economy of nature."

(I. p. 84.)

It is curious that so much importance should be attached to this supplementary idea. It seems obvious that the theory of the origin of species by natural selection necessarily involves the divergence of the forms selected. An individual which varies, _ipso facto_ diverges from the type of its species; and its progeny, in which the variation becomes intensified by selection, must diverge still more, not only from the parent stock, but from any other race of that stock starting from, a variation of a different character. The selective process could not take place unless the selected variety was either better adapted to the conditions than the original stock, or adapted to other conditions than the original stock. In the first case, the original stock would be sooner or later extirpated; in the second, the type, as represented by the original stock and the variety, would occupy more diversified stations than it did before.

The theory, essentially such as it was published fourteen years later, was written out in 1844, and Darwin was so fully convinced of the importance of his work, as it then stood, that he made special arrangements for its publication in case of his death. But it is a singular example of reticent fort.i.tude, that, although for the next fourteen years the subject never left his mind, and during the latter half of that period he was constantly engaged in ama.s.sing facts bearing upon it from wide reading, a colossal correspondence, and a long series of experiments, only two or three friends were cognisant of his views. To the outside world he seemed to have his hands quite sufficiently full of other matters. In 1844, he published his observations on the volcanic islands visited during the voyage of the "Beagle." In 1845, a largely remodelled edition of his "Journal" made its appearance, and immediately won, as it has ever since held, the favour of both the scientific and the unscientific public. In 1846, the "Geological Observations in South America" came out, and this book was no sooner finished than Darwin set to work upon the Cirripedes. He was led to undertake this long and heavy task, partly by his desire to make out the relations of a very anomalous form which he had discovered on the coast of Chili; and partly by a sense of "presumption in acc.u.mulating facts and speculating on the subject of variation without having worked out my due share of species." (II. p. 31.) The eight or nine years of labour, which resulted in a monograph of first-rate importance in systematic zoology (to say nothing of such novel points as the discovery of complemental males), left Darwin no room to reproach himself on this score, and few will share his "doubt whether the work was worth the consumption of so much time." (I.

p. 82.)

In science no man can safely speculate about the nature and relation of things with which he is unacquainted at first hand, and the acquirement of an intimate and practical knowledge of the process of species-making and of all the uncertainties which underlie the boundaries between species and varieties, drawn by even the most careful and conscientious systematists [Footnote: "After describing a set of forms as distinct species, tearing up my MS., and making them one species, tearing that up and making them separate, and then making them one again (which has happened to me), I have gnashed my teeth, cursed species, and asked what sin I had committed to be so punished." (II. p. 40.) Is there any naturalist provided with a logical sense and a large suite of specimens, who has not undergone pangs of the sort described in this vigorous paragraph, which might, with advantage, be printed on the t.i.tle-page of every systematic monograph as a warning to the uninitiated?] were of no less importance to the author of the "Origin of Species" than was the bearing of the Cirripede work upon "the principles of a natural cla.s.sification." (I. p. 81.) No one, as Darwin justly observes, has a "right to examine the question of species who has not minutely described many." (II. p. 39.)

In September, 1854, the Cirripede work was finished, "ten thousand barnacles" had been sent "out of the house, all over the world," and Darwin had the satisfaction of being free to turn again to his "old notes on species." In 1855, he began to breed pigeons, and to make observations on the effects of use and disuse, experiments on seeds, and so on, while resuming his industrious collection of facts, with a view "to see how far they favour or are opposed to the notion that wild species are mutable or immutable. I mean with my utmost power to give all arguments and facts on both sides. I have a _number_ of people helping me every way, and giving me most valuable a.s.sistance; but I often doubt whether the subject will not quite overpower me." (II. p. 49.)

Early in 1856, on Lyell's advice, Darwin began to write out his views on the origin of species on a scale three or four times as extensive as that of the work published in 1859. In July of the same year he gave a brief sketch of his theory in a letter to Asa Gray; and, in the year 1857, his letters to his correspondents show him to be busily engaged on what he calls his "big book." (II. pp. 85, 94.) In May, 1857, Darwin writes to Wallace: "I am now preparing my work [on the question how and in what way do species and varieties differ from each other] for publication, but I find the subject so very large, that, though I have written many chapters, I do not suppose I shall go to press for two years." (II. p. 95.) In December, 1857, he writes, in the course of a long letter to the same correspondent, "I am extremely glad to hear that you are attending to distribution in accordance with theoretical ideas. I am a firm believer that without speculation there is no good and original observation." (II.

p. 108.) [Footnote: The last remark contains a pregnant truth, but it must be confessed it hardly squares with the declaration in the _Autobiography_, (I. p. 83), that he worked on "true Baconian principles."] In June, 1858, he received from Mr. Wallace, then in the Malay Archipelago, an "Essay on the tendency of varieties to depart indefinitely from the original type," of which Darwin says, "If Wallace had my MS. sketch written out in 1842 he could not have made a better short abstract! Even his terms stand now as heads of my chapters. Please return me the MS., which he does not say he wishes me to publish, but I shall, of course, at once write and offer to send it to any journal. So all my originality, whatever it may amount to, will be smashed, though my book, if ever it will have any value, will not be deteriorated; as all the labour consists in the application of the theory." (II. p. 116.)

Thus, Darwin's first impulse was to publish Wallace's essay without note or comment of his own. But, on consultation with Lyell and Hooker, the latter of whom had read the sketch of 1844, they suggested, as an undoubtedly more equitable course, that extracts from the MS. of 1844 and from the letter to Dr. Asa Gray should be communicated to the Linnean Society along with Wallace's essay. The joint communication was read on July 1, 1858, and published under the t.i.tle "On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection." This was followed, on Darwin's part, by the composition of a summary account of the conclusions to which his twenty years' work on the species question had led him. It occupied him for thirteen months, and appeared in November, 1859, under the t.i.tle "On the Origin of Species by means of Natural Selection or the Preservation of Favoured Races in the Struggle of Life."

It is doubtful if any single book, except the "Principia," ever worked so great and so rapid a revolution in science, or made so deep an impression on the general mind. It aroused a tempest of opposition and met with equally vehement support, and it must be added that no book has been more widely and persistently misunderstood by both friends and foes. In 1861, Darwin remarks to a correspondent, "You understand my book perfectly, and that I find a very rare event with my critics." (I. p. 313.) The immense popularity which the "Origin" at once acquired was no doubt largely due to its many points of contact with philosophical and theological questions in which every intelligent man feels a profound interest; but a good deal must be a.s.signed to a somewhat delusive simplicity of style, which tends to disguise the complexity and difficulty of the subject, and much to the wealth of information on all sorts of curious problems of natural history, which is made accessible to the most unlearned reader. But long occupation with the work has led the present writer to believe that the "Origin of Species" is one of the hardest of books to master; [Footnote: He is comforted to find that probably the best qualified judge among all the readers of the _Origin_ in 1859 was of the same opinion. Sir J. Hooker writes, "It is the very hardest book to read, to full profit, that I ever tried." (II. p. 242.)] and he is justified in this conviction by observing that although the "Origin" has been close on thirty years before the world, the strangest misconceptions of the essential nature of the theory therein advocated are still put forth by serious writers.

Although, then, the present occasion is not suitable for any detailed criticism of the theory, or of the objections which have been brought against it, it may not be out of place to endeavour to separate the substance of the theory from its accidents; and to show that a variety not only of hostile comments, but of friendly would-be improvements lose their _raison d'etre_ to the careful student. Observation proves the existence among all living beings of phenomena of three kinds, denoted by the terms heredity, variation, and multiplication. Progeny tend to resemble their parents; nevertheless all their organs and functions are susceptible of departing more or less from the average parental character; and their number is in excess of that of their parents. Severe compet.i.tion for the means of living, or the struggle for existence, is a necessary consequence of unlimited multiplication; while selection, or the preservation of favourable variations and the extinction of others, is a necessary consequence of severe compet.i.tion. "Favourable variations" are those which are better adapted to surrounding conditions. It follows, therefore, that every variety which is selected into a species is so favoured and preserved in consequence of being, in some one or more respects, better adapted to its surroundings than its rivals. In other words, every species which exists, exists in virtue of adaptation, and whatever accounts for that adaptation accounts for the existence of the species.

To say that Darwin has put forward a theory of the adaptation of species, but not of their origin, is therefore to misunderstand the first principles of the theory. For, as has been pointed out, it is a necessary consequence of the theory of selection that every species must have some one or more structural or functional peculiarities, in virtue of the advantage conferred by which, it has fought through the crowd of its compet.i.tors and achieved a certain duration. In this sense, it is true that every species has been "originated" by selection.

There is another sense, however, in which it is equally true that selection originates nothing. "Unless profitable variations ... occur natural selection can do nothing" ("Origin," Ed. I. p. 82). "Nothing can be effected unless favourable variations occur" (_ibid_., p. 108). "What applies to one animal will apply throughout time to all animals--that is, if they vary--for otherwise natural selection can do nothing. So it will be with plants" (_ibid_., p. 113). Strictly speaking, therefore, the origin of species in general lies in variation; while the origin of any particular species lies, firstly, in the occurrence, and secondly, in the selection and preservation of a particular variation. Clearness on this head will relieve one from the necessity of attending to the fallacious a.s.sertion that natural selection is a _deus ex machina_, or occult agency.

Those, again, who confuse the operation of the natural causes which bring about variation and selection with what they are pleased to call "chance"

can hardly have read the opening paragraph of the fifth chapter of the "Origin" (Ed. I, p. 131): "I have sometimes spoken as if the variations ...

had been due to chance. This is of course a wholly incorrect expression, but it seems to acknowledge plainly our ignorance of the cause of each particular variation."

Another point of great importance to the right comprehension of the theory, is, that while every species must needs have some adaptive advantageous characters to which it owes its preservation by selection, it may possess any number of others which are neither advantageous nor disadvantageous, but indifferent, or even slightly disadvantageous. (_Ibid_., p. 81.) For variations take place, not merely in one organ or function at a time, but in many; and thus an advantageous variation, which gives rise to the selection of a new race or species, may be accompanied by others which are indifferent, but which are just as strongly hereditary as the advantageous variations. The advantageous structure is but one product of a modified general const.i.tution which may manifest itself by several other products; and the selective process carries the general const.i.tution along with the advantageous special peculiarity. A given species of plant may owe its existence to the selective adaptation of its flowers to insect fertilisers; but the character of its leaves may be the result of variations of an indifferent character. It is the origin of variations of this kind to which Darwin refers in his frequent reference to what he calls "laws of correlation of growth" or "correlated variation."

These considerations lead us further to see the inappropriateness of the objections raised to Darwin's theory on the ground that natural selection does not account for the first commencements of useful organs. But it does not pretend to do so. The source of such commencements is necessarily to be sought in different variations, which remain unaffected by selection until they have taken such a form as to become utilisable in the struggle for existence.

It is not essential to Darwin's theory that anything more should be a.s.sumed than the facts of heredity, variation, and unlimited multiplication; and the validity of the deductive reasoning as to the effect of the last (that is, of the struggle for existence which it involves) upon the varieties resulting from the operation of the former. Nor is it essential that one should take up any particular position in regard to the mode of variation, whether, for example, it takes place _per saltum_ or gradually; whether it is definite in character or indefinite. Still less are those who accept the theory bound to any particular views as to the causes of heredity or of variation.

That Darwin held strong opinions on some or all of these points may be quite true; but, so far as the theory is concerned, they must be regarded as _obiter dicta_. With respect to the causes of variation, Darwin's opinions are, from first to last, put forward altogether tentatively. In the first edition of the "Origin," he attributes the strongest influence to changes in the conditions of life of parental organisms, which he appears to think act on the germ through the intermediation of the s.e.xual organs.

He points out, over and over again, that habit, use, disuse, and the direct influence of conditions have some effect, but he does not think it great, and he draws attention to the difficulty of distinguis.h.i.+ng between effects of these agencies and those of selection. There is, however, one cla.s.s of variations which he withdraws from the direct influence of selection, namely, the variations in the fertility of the s.e.xual union of more or less closely allied forms. He regards less fertility, or more or less complete sterility, as "incidental to other acquired differences." (_Ibid_., p.

245.)

Considering the difficulties which surround the question of the causes of variation, it is not to be wondered at, that Darwin should have inclined, sometimes, rather more to one and, sometimes, rather more to another of the possible alternatives. There is little difference between the last edition of the "Origin" (1872) and the first on this head. In 1876, however, he writes to Moritz Wagner, "In my opinion, the greatest error which I have committed has been not allowing sufficient weight to the direct action of the environments, i.e., food, climate, &c., independently of natural selection. ...When I wrote the 'Origin,' and for some years afterwards, I could find little good evidence of the direct action of the environment; now there is a large body of evidence, and your case of the Saturnia is one of the most remarkable of which I have heard." (III, p. 159.) But there is really nothing to prevent the most tenacious adherent to the theory of natural selection from taking any view he pleases as to the importance of the direct influence of conditions and the hereditary transmissibility of the modifications which they produce. In fact, there is a good deal to be said for the view that the so-called direct influence of conditions is itself a case of selection. Whether the hypothesis of Pangenesis be accepted or rejected, it can hardly be doubted that the struggle for existence goes on not merely between distinct organisms, but between the physiological units of which each organism is composed, and that changes in external conditions favour some and hinder others.

After a short stay in Cambridge, Darwin resided in London for the first five years which followed his return to England; and for three years, he held the post of Secretary to the Geological Society, though he shared to the full his friend Lyell's objection to entanglement in such engagements.

In fact, he used to say in later life, more than half in earnest, that he gave up hoping for work from men who accepted official duties and, especially, Government appointments. Happily for him, he was exempted from the necessity of making any sacrifice of this kind, but an even heavier burden was laid upon him. During the earlier half of his voyage Darwin retained the vigorous health of his boyhood, and indeed proved himself to be exceptionally capable of enduring fatigue and privation. An anomalous but severe disorder, which laid him up for several weeks at Valparaiso in 1834, however, seems to have left its mark on his const.i.tution; and, in the later years of his London life, attacks of illness, usually accompanied by severe vomiting and great prostration of strength, became frequent. As he grew older, a considerable part of every day, even at his best times, was spent in misery; while, not unfrequently, months of suffering rendered work of any kind impossible. Even Darwin's remarkable tenacity of purpose and methodical utilisation of every particle of available energy could not have enabled him to achieve a fraction of the vast amount of labour he got through, in the course of the following forty years, had not the wisest and the most loving care unceasingly surrounded him from the time of his marriage in 1839. As early as 1842, the failure of health was so marked that removal from London became imperatively necessary; and Darwin purchased a house and grounds at Down, a solitary hamlet in Kent, which was his home for the rest of his life. Under the strictly regulated conditions of a valetudinarian existence, the intellectual activity of the invalid might have put to shame most healthy men; and, so long as he could hold his head up, there was no limit to the genial kindness of thought and action for all about him. Those friends who were privileged to share the intimate life of the household at Down have an abiding memory of the cheerful restfulness which pervaded and characterised it.

After mentioning his settlement at Down, Darwin writes in his Autobiography:--

"My chief enjoyment and sole employment throughout life has been scientific work; and the excitement from such work makes me, for the time, forget, or drives quite away, my daily discomfort. I have, therefore, nothing to record during the rest of my life, except the publication of my several books." (I, p. 79.)

Of such works published subsequently to 1859, several are monographic discussions of topics briefly dealt with in the "Origin," which, it must always be recollected, was considered by the author to be merely an abstract of an _opus majus_.

The earliest of the books which may be placed in this category, "On the Various Contrivances by which Orchids are Fertilised by Insects," was published in 1862, and whether we regard its theoretical significance, the excellence of the observations and the ingenuity of the reasonings which it records, or the prodigious ma.s.s of subsequent investigation of which it has been the parent, it has no superior in point of importance. The conviction that no theory of the origin of species could be satisfactory which failed to offer an explanation of the way in which mechanisms involving adaptations of structure and function to the performance of certain operations are brought about, was, from the first, dominant in Darwin's mind. As has been seen, he rejected Lamarck's views because of their obvious incapacity to furnish such an explanation in the case of the great majority of animal mechanisms, and in that of all those presented by the vegetable world.

So far back as 1793, the wonderful work of Sprengel had established, beyond any reasonable doubt, the fact that, in a large number of cases, a flower is a piece of mechanism the object of which is to convert insect visitors into agents of fertilisation. Sprengel's observations had been most undeservedly neglected and well-nigh forgotten; but Robert Brown having directed Darwin's attention to them in 1841, he was attracted towards the subject, and verified many of Sprengel's statements. (III, p. 258.) It may be doubted whether there was a living botanical specialist, except perhaps Brown, who had done as much. If, however, adaptations of this kind were to be explained by natural selection, it was necessary to show that the plants which were provided with mechanisms for ensuring the aid of insects as fertilisers, were by so much the better fitted to compete with their rivals. This Sprengel had not done. Darwin had been attending to cross fertilisation in plants so far back as 1839, from having arrived, in the course of his speculations on the origin of species, at the conviction "that crossing played an important part in keeping specific forms constant"

(I, p. 90). The further development of his views on the importance of cross fertilisation appears to have taken place between this time and 1857, when he published his first papers on the fertilisation of flowers in the "Gardener's Chronicle." If the conclusion at which he ultimately arrived, that cross fertilisation is favourable to the fertility of the parent and to the vigour of the offspring, is correct, then it follows that all those mechanisms which hinder self-fertilisation and favour crossing must be advantageous in the struggle for existence; and, the more perfect the action of the mechanism, the greater the advantage. Thus the way lay open for the operation of natural selection in gradually perfecting the flower as a fertilisation-trap. a.n.a.logous reasoning applies to the fertilising insect. The better its structure is adapted to that of the trap, the more will it be able to profit by the bait, whether of honey or of pollen, to the exclusion of its compet.i.tors. Thus, by a sort of action and reaction, a two-fold series of adaptive modifications will be brought about.

In 1865, the important bearing of this subject on his theory led Darwin to commence a great series of laborious and difficult experiments on the fertilisation of plants, which occupied him for eleven years, and furnished him with the unexpectedly strong evidence in favour of the influence of crossing which he published in 1876, under the t.i.tle of "The Effects of Cross and Self Fertilisation in the Vegetable Kingdom." Incidentally, as it were, to this heavy piece of work, he made the remarkable series of observations on the different arrangements by which crossing is favoured and, in many cases, necessitated, which appeared in the work on "The Different Forms of Flowers in Plants of the same Species" in 1877.

In the course of the twenty years during which Darwin was thus occupied in opening up new regions of investigation to the botanist and showing the profound physiological significance of the apparently meaningless diversities of floral structure, his attention was keenly alive to any other interesting phenomena of plant life which came in his way. In his correspondence, he not unfrequently laughs at himself for his ignorance of systematic botany; and his acquaintance with vegetable anatomy and physiology was of the slenderest. Nevertheless, if any of the less common features of plant life came under his notice, that imperious necessity of seeking for causes which nature had laid upon him, impelled, and indeed compelled, him to inquire the how and the why of the fact, and its bearing on his general views. And as, happily, the atavic tendency to frame hypotheses was accompanied by an equally strong need to test them by well-devised experiments, and to acquire all possible information before publis.h.i.+ng his results, the effect was that he touched no topic without elucidating it.

Thus the investigation of the operations of insectivorous plants, embodied in the work on that topic published in 1875, was started fifteen years before, by a pa.s.sing observation made during one of Darwin's rare holidays.

"In the summer of 1860, I was idling and resting near Hartfield, where two species of Drosera abound; and I noticed that numerous insects had been entrapped by the leaves. I carried home some plants, and on giving them some insects saw the movements of the tentacles, and this made me think it possible that the insects were caught for some special purpose.

Fortunately, a crucial test occurred to me, that of placing a large number of leaves in various nitrogenous and non-nitrogenous fluids of equal density; and as soon as I found that the former alone excited energetic movements, it was obvious that here was a fine new field for investigation." (I, p. 95.)

The researches thus initiated led to the proof that plants are capable of secreting a digestive fluid like that of animals, and of profiting by the result of digestion; whereby the peculiar apparatuses of the insectivorous plants were brought within the scope of natural selection. Moreover, these inquiries widely enlarged our knowledge of the manner in which stimuli are transmitted in plants, and opened up a prospect of drawing closer the a.n.a.logies between the motor processes of plants and those of animals.

So with respect to the books on "Climbing Plants" (1875), and on the "Power of Movement in Plants" (1880), Darwin says;--

"I was led to take up this subject by reading a short paper by Asa Gray, published in 1858. He sent me some seeds, and on raising some plants I was so much fascinated and perplexed by the revolving movements of the tendrils and stems, which movements are really very simple, though appearing at first sight very complex, that I procured various other kinds of climbing plants and studied the whole subject.... Some of the adaptations displayed by climbing plants are as beautiful as those of orchids for ensuring cross-fertilisation." (I, p. 93.)

In the midst of all this amount of work, remarkable alike for its variety and its importance, among plants, the animal kingdom was by no means neglected. A large moiety of "The Variation of Animals and Plants under Domestication" (1868), which contains the _pieces justificatives_ of the first chapter of the "Origin," is devoted to domestic animals, and the hypothesis of "pangenesis" propounded in the second volume applies to the whole living world. In the "Origin" Darwin throws out some suggestions as to the causes of variation, but he takes heredity, as it is manifested by individual organisms, for granted, as an ultimate fact; pangenesis is an attempt to account for the phenomena of heredity in the organism, on the a.s.sumption that the physiological units of which the organism is composed give off gemmules, which, in virtue of heredity, tend to reproduce the unit from which they are derived.

That Darwin had the application of his theory to the origin of the human species clearly in his mind in 1859, is obvious from a pa.s.sage in the first edition of "The Origin of Species." (Ed. I, p. 488.) "In the distant future I see open fields for far more important researches. Psychology will be based on a new foundation, that of the necessary acquirement of each mental power and capacity by gradation. Light will be thrown on the origin of man and his history." It is one of the curiosities of scientific literature, that, in the face of this plain declaration, its author should have been charged with concealing his opinions on the subject of the origin of man.

But he reserved the full statement of his views until 1871, when the "Descent of Man" was published. The "Expression of the Emotions"

(originally intended to form only a chapter in the "Descent of Man") grew into a separate volume, which appeared in 1872. Although always taking a keen interest in geology, Darwin naturally found no time disposable for geological work, even had his health permitted it, after he became seriously engaged with the great problem of species. But the last of his labours is, in some sense, a return to his earliest, inasmuch as it is an expansion of a short paper read before the Geological Society more than forty years before, and, as he says, "revived old geological thoughts" (I, p. 98). In fact, "The Formation of Vegetable Mould through the Action of Worms," affords as striking an example of the great results produced by the long-continued operation of small causes as even the author of the "Principles of Geology" could have desired.

In the early months of 1882 Darwin's health underwent a change for the worse; attacks of giddiness and fainting supervened, and on the 19th of April he died. On the 24th, his remains were interred in Westminster Abbey, in accordance with the general feeling that such a man as he should not go to the grave without some public recognition of the greatness of his work.

Click Like and comment to support us!

RECENTLY UPDATED NOVELS

About Darwiniana Part 14 novel

You're reading Darwiniana by Author(s): Thomas Henry Huxley. This novel has been translated and updated at LightNovelsOnl.com and has already 929 views. And it would be great if you choose to read and follow your favorite novel on our website. We promise you that we'll bring you the latest novels, a novel list updates everyday and free. LightNovelsOnl.com is a very smart website for reading novels online, friendly on mobile. If you have any questions, please do not hesitate to contact us at [email protected] or just simply leave your comment so we'll know how to make you happy.