LightNovesOnl.com

The Economic Aspect of Geology Part 34

The Economic Aspect of Geology - LightNovelsOnl.com

You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.

THE USE OF PLACERS IN TRACING MINERAL OUTCROPS

Outcrops of ore-bearing rock may occasionally be located by tracing a placer deposit back to its source, or by following up ore fragments in the "wash" on mountain sides to the place of origin, or by noting ore fragments in glacial deposits. The presence of an ore mineral in a placer naturally raises the question as to whence it came. If it is a recent placer, it may be comparatively easy to follow up the stream channels to the head-water territory which is delivering the main ma.s.s of sediment, and there to locate a vein in place. The problem is complicated by multiplicity of tributaries and by large size of the drainage areas. In such cases careful panning and testing of the gravels at frequent intervals may show which of several tributaries are contributing most of the values, and thus may further localize the area of search. Many important mining districts, including b.u.t.te, Bisbee, the Mother Lode region of southern California, the diamond fields of Africa, and others, have been found by tracing up placers in this manner. In the case of an older placer deposit, where the topography and drainage have been much altered since its formation, or where the deposit has been covered by later sediments, the problem is of course much more difficult.

Much less than a commercially valuable placer deposit in unconsolidated surface rocks may start a search for the mother lode. A single fragment of ore in the "wash" naturally directs attention up the slope, and the repet.i.tion of fragments in a certain direction may lead unerringly to the source. The fragments may not even in themselves carry value, but may consist of detrital material from the leached outcrop--such as iron or manganese oxides, which, because of their red or black color, stand out conspicuously in the rock debris.

In the Lake Superior region large angular fragments of iron ore or iron formation in the glacial drift immediately raise question as to source.

If the fragments are rounded and small, they usually indicate a very distant source. The general direction of glacial movement is known in most places, and by tracing up the fragments in this direction the outcrop may be found; or the chain of fragments may be traced to a point where they stop, which point may serve to locate the parent bedrock carrying the ore body, even though it does not outcrop.

An interesting suggestion was made some years ago with reference to the diamonds found sporadically in the terminal moraines in Wisconsin and other mid-west states. The diamonds are of such size and quality as to indicate surely the existence of a real diamond field somewhere to the north. The locations of these diamond finds were platted on a glacial map, and lines were projected in a general northerly direction along the known lines of the glacial movement. It was found that these lines converged at a point near Hudson's Bay. The data were too meager and the base line too short for this long projection, and the indicated source of the diamonds can be regarded as the merest speculation. However, with the finding of additional diamonds in the drift, as seems very likely, the refinement of this method might conceivably bring results in time.

THE USE OF MAGNETIC SURVEYS IN TRACING MINERAL LEDGES

Magnetic surveys are often useful in tracing iron-bearing rocks beneath the surface, in the discovery of outcrops of such rocks, and in working out their lines of connection. This method is in general use for the crystalline iron ores in the Lake Superior region, Canada, the Adirondacks, and elsewhere in the glaciated portions of the United States. It is not so useful for the brown ores and the Clinton ores of the southeastern United States, which are only slightly magnetic and can be commonly located by other methods.

Where the ore is strongly magnetic, and is a.s.sociated with other rocks which are non-magnetic, the nature of the magnetic field determined by a surface survey with vertical and horizontal needles may tell something about the shape and size of the ore body. Commonly, however, magnetic ores are a.s.sociated with leaner magnetic rocks,--with the result that the magnetic survey, unless it happens to lead to an outcrop of ore, indicates only the general area through which underground exploration might be warranted. In the hemat.i.tic iron ores of Lake Superior, magnetism is less p.r.o.nounced than in the magnet.i.tes; and in the soft hydrous hemat.i.tes, like those of the Mesabi district, it may cause only slight disturbance of the magnetic needle. This disturbance is usually sufficient to locate the position of the iron-bearing formation, though not the position of the ore.

Where the iron formation has been highly metamorphosed, and rendered resistant to weathering and erosion so that it will not concentrate into ore, it is likely to have higher magnetic attraction than the richer ores. For this reason an area of strong magnetic attraction is ordinarily regarded as not particularly favorable to the finding of important hemat.i.te deposits. However, this attraction may be very useful in tracing out the formation to a place where it is less metamorphic, less resistant to erosion, less likely to outcrop, and yet more promising for the discovery of iron ore. For instance, on the east end of the Mesabi and on the east and west ends of the Gogebic district, magnetic surveys trace the iron formation with great ease to points where the attraction is low and the conditions for exploration more favorable.

The magnetic needle has also been used in the search for nickel ore in the Sudbury district of Ontario, but without great success, because of the variety of rocks other than nickel which are more or less magnetic, and because of the slight magnetic properties of the nickel ore itself.

In a large-scale exploration of this type, conducted some years ago, a favorable magnetic belt was discovered, and a pit was sunk to water level but not to bedrock. Years later, the extension of this pit by only a few feet disclosed one of the great ore bodies of the district.

Experimental work on the use of the magnetic needle on copper deposits has yielded some interesting and suggestive results, but this investigation is still under way and the results have not been published.

THE USE OF ELECTRICAL CONDUCTIVITY AND OTHER QUALITIES OF ROCKS IN EXPLORATION

In addition to magnetism, rocks and ores have other properties susceptible to observations made at a distance, such as electrical conductivity, transparency to X-rays, specific induction, elasticity, and density. All these qualities have been of interest to geologists in some connection or another, but none of them have yet been used effectively in exploration for mineral resources. The only one of these properties that has thus far seemed to promise practical results is electrical conductivity. The results yet obtained are slight, and this kind of investigation has rested under something of a cloud, due to extravagant claims of inventors. Nevertheless, there has been a considerable amount of scientific work by physicists, geologists, and engineers, supplemented by special war-time investigations of rock and earth conductivity in connection with ground telephones and the tapping of enemy conversations, which seems to indicate a distinct possibility of practical results in the future,--perhaps not so much in locating specific ore bodies as in locating general types of formation and structures,--which may serve to supplement other methods of search.[38]

The transmission and reflection of sound waves in rocks have also been more or less investigated with reference to their possible military use.

It seems not impossible that these phenomena may be of some geologic aid in the future, but experimental work is yet in a very early stage.

THE USE OF STRUCTURE AND METAMORPHISM IN EXPLORATION

The necessity for careful use of structural data in exploration scarcely requires discussion. References have been made to structural features in connection with coal, oil, iron ore, and other minerals. This phase of study can scarcely be too intensively followed. The tracing of a folded or faulted vein, in a particularly complex system of veins, requires application of all of the methods and principles of structural geology.

Similarly, the importance of applying the principles of metamorphism, embodied in the _metamorphic cycle_ (pp. 27-28) is almost self-evident.

Certain kinds of metamorphism are suggestive of the nature of the mineral deposits with which they are a.s.sociated. One would not look for minerals known to be caused mainly by surficial processes in rocks which have been altered mainly by deep-seated processes. The presence of metamorphism indicating high temperatures and pressures to some extent limits the kinds of minerals which one may expect to find. On the other hand, minerals known to be primarily formed at great depths, providing they are resistant to surface weathering, may be found in deposits which are the result of surficial alterations or katamorphic processes; that is, they may become concentrated as residual materials in weathered zones or as placers.

DRILLING IN EXPLORATION

In the absence of distinctive outcrops, as well as when outcrops are found, drilling is a widely used method of underground exploration in advance of the sinking of shafts or the driving of tunnels. Drilling is more useful in the locating and proving of mineral deposits of large bulk, like deposits of coal, iron, and oil, than mineral deposits of small bulk and high value, like gold and silver deposits. However, it is not always used in the exploration of the first cla.s.s of deposits and is not always eliminated in the exploration of the second cla.s.s. With the development of better mechanical devices, better methods of controlling and ascertaining the direction of the drill hole, and more skillful interpretation of drill samples, the use of drilling is rapidly extending into mineral fields where it was formerly thought not applicable.

The geologist takes an active part in drilling operations by locating the drill holes, by determining the angle of the holes, by identifying and interpreting the samples, by studying bedding, cleavage, and other structures as shown in the samples, and determining the att.i.tude of these structures in the ground, by determining when the horizon is reached which is most promising for mineral, and by determining when the hole shall be stopped. With a given set of surface conditions, the problem of locating and directing a drill hole to secure the maximum possible results for the amount expended requires the careful consideration of many geologic factors,--and, what is more important, their arrangement in proper perspective and relations.h.i.+p. Faulty reasoning from any one of the princ.i.p.al factors, or over-emphasis on any one of them, or failure to develop an accurate three-dimensional conception of the underground structural conditions, may lead to failure or extra expense. Success or failure is swiftly and definitely determined. The geologist is usually employed by the company financing the drilling; but in recognition of the importance of his work, some of the large contracting drill companies now employ their own geologists.

The technique of the geologic interpretation and direction of drilling has become rather complicated and formidable, and has resulted in the introduction of special college courses in these subjects.

The desirability of public registration of drilling records is discussed on another page (pp. 305-306).

QUANt.i.tATIVE ASPECTS OF GEOLOGIC EXPLORATION

In recent years there has been a tendency to reduce the geologic factors in exploration to some kind of a quant.i.tative basis. While these factors may be very variable and very complex, their net effect frequently may be expressed in terms of quant.i.tative averages. In various mines and mining districts where operations are of wide extent, local quant.i.tative factors have been worked out which are useful in predicting results from proposed explorations in undeveloped portions. Figures of this sort may be useful and practical guides in planning any given exploration, its cost, and its probable outcome.

Quant.i.tative methods are ill.u.s.trated in the general account of Lake Superior iron ore exploration in a later section.

Curves of production from oil wells and from oil districts have been found to have certain characteristic features in common which are often used in predicting the future output and life of a given well, property, or district. Where a.s.sociated with coal, the percentage of fixed carbon in the coal may be a guide to the presence and nature of the oil (see Chapter VIII).

The geological staff of the Netherlands East Indies estimated the tin reserves of one of these islands by the use of a factor or coefficient, based on the experience of another island.

In the Cobalt district of Canada a factor for future discoveries and output, based on past experience, was similarly developed.

Hoover[39] made a statistical study of several hundred metal mines in various parts of the world, and found that not 6 per cent of the mines that yielded profits ever made them from ore mined below 2,000 feet; and that of the mines that paid dividends, 80 per cent did not yield profit below 1,500 feet, and most of them died above 500 feet.

Attempt has been made by a Swedish geologist to estimate the iron ore resources of continents by the use of an iron coefficient. This coefficient was obtained by dividing the known iron ore resources of the comparatively well-investigated portions of the world by the number of square miles in which they occurred, and was then multiplied into the area of the continents whose resources were to be determined.

The application of quant.i.tative methods of this kind has not yet become very general, nor is it possible to use them in some cases; where applied many of them have been very crude and others have been partly disproved by experience. With increasing knowledge and experience, such methods are becoming more accurate and useful, and are likely to have wider use in the future.

ORIGIN OF MINERAL DEPOSITS AS A FACTOR IN EXPLORATION

In exploration, the geologist is keen to ascertain the origin of the mineral deposit. This is often a source of wonder to the layman or "practical" man, and the geologist may be charged with having let his fondness for theory run away with him. A widespread fatalistic conception is expressed in the Cornishman's dictum on ore, "Where it is, there it is." Yet an understanding of the origin of any particular ore, the "why" of it, is coming to be recognized as the most effective means of reaching sound practical conclusions. By ascertaining the approximate origin of the ore, it may be possible at once to infer a whole group of practical considerations based on experience with ores of like origin in other localities. The origin of the ore is the geologist's primary interest, and it is this which gives him his most effective and distinctive tool in exploration. Many other phases of exploration work may be picked up empirically by any one familiar with the local conditions; but when the man without sound geologic training attempts to go into this particular field, his lack of background and perspective often leads to fantastic hypotheses which may vitiate the inferences on which he plans his exploration.

The scientific investigator, while not accepting the fanciful theories of the local observer, will make a mistake if he fails to recognize the residuum of solid fact on which they are built. Many practical explorers are shrewd observers of empirical facts, even though their explanations may show a lack of comprehension of the processes involved. Any a.s.sumption of superiority, intolerance, or lack of sympathy, on the part of the geologist, toward the inadequate explanations and descriptions given him by the practical man, is likely to indicate a weakness or limitation in his own mental processes. The geologist's business is to sift out the fact from the inference, and not to throw over the whole structure because some of the inferences are faulty.

LAKE SUPERIOR IRON ORE EXPLORATION AS AN ILl.u.s.tRATION

To ill.u.s.trate the application of some of the methods of exploration of the kinds described in this chapter, the writer selects an example from his own experience in the Lake Superior iron fields.[40]

In this region, consideration of the economic aspects of the problem may eliminate from the best explorable field certain Canadian portions which are far from water transportation, because the conditions in these sections would prevent the use of anything but an exceptionally large and rich deposit. Economic conditions determine in advance also that it is not worth while looking for ores of certain grades, either because they are not usable on account of deleterious const.i.tuents or low content of iron, or because these particular grades have already been developed in excess of requirements. Having determined what ore is desired, whether Bessemer or non-Bessemer, whether open-hearth or foundry, further elimination of area is possible on the basis of past experience.

Coming to the geologic phases of the problem, the first step is to eliminate great areas of rock which are known never to contain iron ore, like the granite areas and the quartzite and limestone areas. Within the remaining areas, by examination of the surface outcrops and with the aid of magnetic surveys, iron formations are found which are the mother rock of the ores. In Michigan, it has been possible to use certain percentage expectations in the areal location of iron formations within certain series of rocks extending over wide areas. Such percentage coefficients have been useful, not only in exploration, but also in the valuation of lands which are so covered with drift that no one knows whether they carry an iron formation or not.

Examination of the iron formations results in elimination of large parts of them, because their metamorphic condition is not favorable to ore concentration. In the remaining areas more intensive methods are followed. It is scarcely possible to summarize briefly all of the structural and stratigraphic methods used in locating the ore bodies.

These have often been described in print.[41] Comparatively recent advances in this phase of exploration work have been in the more detailed application of stratigraphic methods to the iron formation. The group characteristics of the iron formation are fairly uniform and distinctive as compared with all other rocks; yet within the iron formation there are so many different kinds of layers represented that it is possible to use these variations with great effectiveness, in correlating favorable horizons for ore deposition, in interpreting drill records, and in other ways. Another method of approach, employed chiefly on the Mesabi Range, relates to the slumping of the ore layers which results from the leaching of silica during the concentration of the ore.

This slumping can be measured quant.i.tatively, and has been used to much advantage in exploration, in correlation of ore horizons, in preparation of sections and ore estimates, etc.

Early geologic explorations in the Lake Superior country were based on the a.s.sumption that the ores were concentrated by waters working down from the present erosion surface; but recognition of the fact that the waters which did the work were related to a far older and different erosion surface, under conditions which allowed of a far deeper penetration, has modified exploration plans for certain of the districts like the Marquette and Gogebic.

Notwithstanding the complexity of the geologic factors involved, their net result has been to concentrate iron ores in a surprisingly uniform ratio to the ma.s.s of the formation in different parts of the region,--with the result that on an average it may be predicted for any district, in an exploration of sufficient magnitude, how much ore is likely to be cut in either vertical or horizontal dimension. Thirteen per cent of the productive area of the Mesabi iron formation is iron ore. For the remainder of the Lake Superior region five or six per cent is the factor. These figures mean that, if a person could explore a broad enough area of iron formation, any miscellaneous group of drill holes or underground openings would tend to yield these percentage results. Such percentages are amply sufficient to pay a large profit on the exploration. The question may be raised why the application of geology is required, if such average results can be secured from miscellaneous undirected work. The answer is that seldom is it possible to conduct an exploration on a sufficiently large scale to be sure of approximating this average, and that geologic study has made it possible in many cases to secure a better percentage result. If the geologist is able to raise the percentage ever so little, the expenditure is amply justified. He is not expected to have 100 per cent success; but he is expected to better the average returns, and in this on the whole he has not failed.

Applying this method specifically to the Gogebic Range, it appears that up to January 1, 1918, exploration and development had covered 3,650 acres of iron formation, measured along the dip in the plane of the footwall, within the limits of the area in which the formation is in such condition as to allow concentration of the ore. The total area of the footwall to a depth of 3,000 feet is approximately 9,650 acres. The range, therefore, was 38 per cent developed to this depth. In the developed area, 160,000,000 tons of ore had been found, or approximately one ton per square foot of footwall area, or 43,800 per acre of footwall explored. The total area of ore measured on the footwall was 785 acres. The ratio of ore area to total explored area, measured in the plane of the footwall, was 21-1/2 per cent. This may be taken in a rough way to indicate the average exploring possibilities in new ground, where local conditions to the contrary do not exist. This means that over the whole range about one drill hole or cross-cut in five will strike ore on an average. Or, looked at in another way, about 200 feet of drifting in every 1,000 on the footwall will be in ore. Applying this factor to the unexplored area, amounting to 6,000 acres, the range had an expectation on January 1, 1918, to a depth of 3,000 feet, over and above ores already discovered, of approximately 262,800,000 tons. This was sufficient to extend the life of the range by about forty-four years.

Knowing the average cost of development of ore per foot in the past, and knowing the annual output and its rate of acceleration, it is possible to figure with some accuracy how much expenditure should be planned for annually in the future in order to maintain a safe margin of reserves against output.

Such quant.i.tative considerations in the Lake Superior region serve not only to guide the general conduct of the exploration and development work, but in some cases as a basis for valuation both for commercial and taxation purposes.

Click Like and comment to support us!

RECENTLY UPDATED NOVELS

About The Economic Aspect of Geology Part 34 novel

You're reading The Economic Aspect of Geology by Author(s): C. K. Leith. This novel has been translated and updated at LightNovelsOnl.com and has already 590 views. And it would be great if you choose to read and follow your favorite novel on our website. We promise you that we'll bring you the latest novels, a novel list updates everyday and free. LightNovelsOnl.com is a very smart website for reading novels online, friendly on mobile. If you have any questions, please do not hesitate to contact us at [email protected] or just simply leave your comment so we'll know how to make you happy.