A Course In Wood Turning - LightNovelsOnl.com
You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.
A-II--7. Vise Handles.
Turn the spindle with the solid head to dimensions. Bore a hole through a 1-1/4" square block and fit the block snugly to the end of the spindle. Turn this block to the same dimensions as the other head. This method will save chucking the second head and is much quicker.
CHAPTER VI
OVAL TURNING
Oval work as a problem in turning will be found to be a very good one as well as interesting to the pupil. It brings in the principle of the oval as used in ordinary shop practice; (arcs from points on the major and minor axes). For thick heavy ovals the off-centering is very slight, while for long, thin ones the off-centering is greater. The measurements given on Plates A-III--1-a, b and A-III--2-a, b will give a good idea of approximate distances to be used.
While the tool operations are much the same as in other spindle turning there is one notable difference. The design must be worked out by eye, because of the nature of the work no caliper measurements can be made for depth of cuts.
To get the best results the stock of oval turning should be cut square or slightly rectangular in cross-section and about 3" longer than the model to be made. The thickness of the stock should be about 1/8"
greater than the major axis of the oval wanted.
The centers are located in the usual manner after which perpendicular lines are drawn from the sides, pa.s.sing through the points of the centers. From the ends of one of these, perpendicular lines are extended lengthwise of the stock (on opposite sides) meeting the corresponding perpendicular at the other end of the stock. These lines form the ridge of the oval. On the other perpendiculars, the points for off-centering are laid off, measuring the required distance on both sides of the center point.
With a 1/8" drill bore holes 1/4" deep at each of the off-centering points as well as the original center. This will insure the lathe centers penetrating the stock at the proper point. The stock is then placed in the lathe, using two corresponding off-center points as centers.
With the lathe running at third speed turn down the stock to the horizontal line forming the ridge of the oval, excepting for a distance of about 1-1/4" at the ends. The stock at the ends is necessary for the off-centering and, if cut away, will spoil the centering for the other side, especially at the live center end. The stock is then changed to the other off-center points and the second side is cut down to the line.
All measurements are then laid out and the design is cut, changing the stock in the lathe when necessary. Care should be taken that the sharp ridge left on the work forms a straight line the full length of the stock. After the design has been finished, the stock is centered on the true center and a very thin cut is taken the full length of the object to remove the sharp corners. The model is then sandpapered while the lathe is running very slowly.
CHAPTER VII
DUPLICATE TURNING
Under the head of duplicate turning have been cla.s.sified only such models as clearly indicate the necessity of making two or more articles to complete the model or set of articles desired. But it is not intended to convey the idea that other models may not be made in duplicate as in many cases it is very desirable and even preferable that they should be made that way. Whatever the problem may be the suggestions offered at this point may be applied effectively.
Whenever two or more models are to be made identically alike there are always two possibilities of inaccuracies that will render the work dissimilar: First, inaccurate measuring both for length and points of new diameters and also on the new diameters themselves; second, a variation in the curved surfaces either on long convex or concave cuts.
The first difficulty can be overcome to a great extent by the use of a measuring stick. This stick should be made of any soft wood. It should be straight on one edge and about the thickness of an ordinary rule. On the straight edge lay off very carefully measurements for length, shoulders, beads, concaves and all points where calipering for new diameters will be necessary. Insert at each point measured a small brad which has been sharpened at both ends, leaving the end protrude about 1/8". Care should be taken that all brads protrude the same distance.
After the stock has been turned to the largest diameter, the stick is held in the position of the rule while measuring and the points are forced against the revolving cylinder, thus scoring it. This stick can be used as many times as the model is to be made and the measurements will always be the same.
To avoid dissimilar curves it is well to cut out a full sized templet of the model to be made. This templet can be made of any thin, stiff material, preferably light sheet iron. In some cases it will be necessary to make the templet in several pieces in order to help facilitate the tool operations.
The use of this templet will not only be a help to getting all curved surfaces the same, but will also check up on the various new diameters on the model. The cylinder should never be in motion while the templet is being used.
CHAPTER VIII
FINIs.h.i.+NG AND POLIs.h.i.+NG
To get a high and lasting polish on wood, the work must be first sanded so as to be perfectly smooth. In addition to this, open grained wood, such as oak, must be properly filled with a wood filler. If properly sharpened tools have been used very little sanding is required, and then worn sandpaper should be used as it does not cut into the work as new paper cuts. Remember sandpaper is not to be used as a tool in cutting down stock when working to dimensions. In using old sandpaper run the lathe at a moderate speed to avoid burning the wood, especially on square or round fillets. Keep the edges of the work sharp and do not wear them round. In using new sandpaper use a fine grit (00 or 0) and move the paper from one end of the work to the other slowly, so that no scratches result on the surface of the work.
The work may be finished by one of two methods. In the first method as in finis.h.i.+ng ordinary cabinet work, the pieces should be stained and filled. In applying filler, run the lathe at the slowest speed after the material has dried sufficiently to rub into the pores of the wood. If the highlights are to be brought out, as in the case of oak, stain and then give a light coat of sh.e.l.lac, and apply the filler after the sh.e.l.lac is dry. The sh.e.l.lac keeps the dark filler from staining the flakes of the oak darker, and the pores of the wood fill in as before.
The pores become darker than the flakes, and at the same time a smooth surface is produced. After the filler has hardened the wood may be waxed or varnished.
The second method, or French polis.h.i.+ng, is rather difficult to apply and requires a little skill. A close grained wood, like maple, will be found more satisfactory for the beginner. An open grained wood may be filled in the ordinary way, or the grain may be filled by rubbing into the pores of the wood a combination of sh.e.l.lac, rotten stone or pumice, oil and alcohol. Rotten stone is used for dark wood and pumice is used for light wood. The wood may be left in the natural or stained as in the first method. The mixture of sh.e.l.lac, rotten stone, oil and alcohol, is applied to the work with a pad made of cotton waste, wrapped in cheese cloth to keep it from sticking to the work. It should be about 1-1/2" in diameter and 1/2" thick. Hold the pad over the mouth of a bottle of sh.e.l.lac and tip the bottle so that the sh.e.l.lac comes in contact with the pad. The sh.e.l.lac will remain clean in a bottle and will be handy. The mouth of the sh.e.l.lac bottle should be about 1" in diameter and should be dipped once. Do likewise with a bottle, having a mouth 1/2" in diameter, containing alcohol. This should be dipped twice allowing the alcohol to dilute the sh.e.l.lac. Then drop on a couple of drops of oil and rub over the pad evenly; this aids in distributing the sh.e.l.lac properly and keeps the pad from sticking to the work. A bottle may also be used for this.
For the rotten stone use a pepper shaker so that it may be sifted on the work as needed.
When the mixture has been applied to the pad, hold the pad against the work lightly at first, until most of the moisture has been worked out of it, and then gradually increase the pressure until the pad is almost dry. In putting on the first coat, use more sh.e.l.lac and alcohol and just enough oil at all times to prevent the pad from sticking to the work.
However, the pad should not contain as much sh.e.l.lac that it can be squeezed out with the fingers. When the pad is dry, another mixture is applied, and where open grained wood is used, rotten stone, or pumice stone, is sprinkled on the work to gradually fill up the pores and to build up a smooth surface. Run the lathe at a low speed, depending on the size of the piece that is being polished. Allow the first coat to dry before applying a second coat for, if too much is put on at any one time, the heat generated in the rubbing will cause the sh.e.l.lac to pull, and it will form rings by piling up. These rings may be worked out in two ways, either by a slight pressure of the pad on the rings or by cutting them with alcohol applied to the pad. If too much alcohol is used it will cut through the sh.e.l.lac and remove what has already been rubbed on. If at any time too much sh.e.l.lac is used it will pile up and form rings. Too much rotten stone will cut down the polish and by absorbing the mixture will leave the pad dry. If too much oil is used the polish will become dull after a day or two.
After the first coat has hardened apply the second, but use less sh.e.l.lac and more alcohol and just enough oil to prevent the pad from sticking.
This may be done by dipping the tip of a finger in the oil and spreading it over the pad. The entire mixture should be so that only a dampness can be felt on the pad. As the process goes on less oil and sh.e.l.lac are used. All oil must be removed when applying the last coat, or the piece will lose its polish. All the pores should be filled, and no rings should be on the finished work. Where a natural finish is desired, apply a coat of boiled linseed oil twelve hours before the work is to be polished. This will bring out the grain and will also aid in applying the first coat; no oil need then be used in the first coat.
A great amount of practice and patience is required to get a first cla.s.s polish. Polis.h.i.+ng can only be learned by experience. Correct your troubles in properly proportioning the mixture. Never use too much sh.e.l.lac as it will build up too fast and will not harden, thus causing rings; or it will pull and catch to the pad, thus forming bunches. The purpose of alcohol is mainly to dilute the sh.e.l.lac and to prevent against putting it on the work too fast, but care must be taken not to use too much alcohol to cut the sh.e.l.lac entirely. The oil helps to distribute the sh.e.l.lac evenly, but it must be removed when finis.h.i.+ng the last coat, or the polish will not remain. It also helps to keep the pad from sticking to the work.
It is impossible to obtain a polish that will be as lasting and rich by any method other than the one described. For success it is essential to learn the proportions of the mixture and to acquire skill in applying the materials by using exactly the right pressure and the right movement of the pad.
CHAPTER IX
FACE-PLATE AND CHUCK TURNING
Face-plate and chuck turning open an entirely new field of work from that taken up in previous chapters of this book. If handled correctly, it has much greater educational and practical value than cylinder turning. From the practical standpoint the field of work is broader and the models to be made are of much greater value. Aside from this, trade methods and practices can be applied and a broad insight into commercial work can be given the student.
In some details of chuck turning the tool operations already learned can be employed, but for the most part they are entirely different. In order to preserve the educational value of the work as brought out by skill and dexterity in handling tools, it will be necessary to use the cutting method wherever possible. In some instances that method will be impossible, and the sc.r.a.ping method must be used.
METHODS OF FASTENING STOCK
All the work thus far has been on models where the stock worked upon is held between the live and dead centers. In face-plate and chuck turning the work is done at the head stock only and the piece is supported by means of a face-plate, or chuck, that is fastened to a face-plate, which is screwed onto the end of the live spindle. There are three methods of fastening stock to the face-plate, and it depends upon the nature of the exercise or model to be made which method is used.
1. SMALL SINGLE SCREW FACE-PLATE. For all work that does not require deep cutting in the center, such as in towel rings, picture frames, etc., the small face-plate with a single screw should be used.
Note:--Should it be found difficult to keep the block from working loose and turning, it is a good plan to fold a piece of sandpaper, grit side out, and place it between the face-plate and the stock.
2. LARGE SURFACE SCREW FACE-PLATE. For all work that does not require deep cutting on the outside, such as exercises, jewel boxes, etc., as well as all large stock, and all stock from which chucks are to be made, the large face-plate with the surface screws should be used.
3. GLUING TO WASTE STOCK. A block of sc.r.a.p wood is fastened to a face-plate the same as for a chuck and surfaced off square. The block from which the model is to be made is planed square on one side and glued to the block on the face-plate with a sheet of paper between the two. To separate the model from the chuck, after it is completed, place a chisel on the waste stock, 1/16" back of the glue joint at such a point as will bring the chisel parallel to the grain of the model, and strike lightly with a mallet. This will cause the paper to separate and the model to become free.