LightNovesOnl.com

Industrial Biography, Iron Workers and Tool Makers Part 12

Industrial Biography, Iron Workers and Tool Makers - LightNovelsOnl.com

You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.

For some time prior to his death Bramah had been employed in the erection of several large machines in his works at Pimlico for sawing stone and timber, to which he applied his hydraulic power with great success. New methods of building bridges and ca.n.a.l-locks, with a variety of other matters, were in an embryo state in his mind, but he did not live to complete them. He was occupied in superintending the action of his hydrostatic press at Holt Forest, in Hants--where upwards of 300 trees of the largest dimensions were in a very short time torn up by the roots,--when he caught a severe cold, which settled upon his lungs, and his life was suddenly brought to a close on the 9th of December, 1814, in his 66th year.

His friend, Dr. Cullen Brown,[8] has said of him, that Bramah was a man of excellent moral character, temperate in his habits, of a pious turn of mind,[9] and so cheerful in temperament, that he was the life of every company into which he entered. To much facility of expression he added the most perfect independence of opinion; he was a benevolent and affectionate man; neat and methodical in his habits, and knew well how to temper liberality with economy. Greatly to his honour, he often kept his workmen employed, solely for their sake, when stagnation of trade prevented him disposing of the products of their labour. As a manufacturer he was distinguished for his prompt.i.tude and probity, and he was celebrated for the exquisite finish which he gave to all his productions. In this excellence of workmans.h.i.+p, which he was the first to introduce, he continued while he lived to be unrivalled.

Bramah was deservedly honoured and admired as the first mechanical genius of his time, and as the founder of the art of tool-making in its highest branches. From his shops at Pimlico came Henry Maudslay, Joseph Clement, and many more first-cla.s.s mechanics, who carried the mechanical arts to still higher perfection, and gave an impulse to mechanical engineering, the effects of which are still felt in every branch of industry.

The parish to which Bramah belonged was naturally proud of the distinction he had achieved in the world, and commemorated his life and career by a marble tablet erected by subscription to his memory, in the parish church of Silkstone. In the churchyard are found the tombstones of Joseph's father, brother, and other members of the family; and we are informed that their descendants still occupy the farm at Stainborough on which the great mechanician was born.

[1] The lock invented by Bramah was patented in 1784. Mr. Bramah himself fully set forth the specific merits of the invention in his Dissertation on the Construction of Locks. In a second patent, taken out by him in 1798, he amended his first with the object of preventing the counterfeiting of keys, and suspending the office of the lock until the key was again in the possession of the owner. This he effected by enabling the owner so to alter the sliders as to render the lock inaccessible to such key if applied by any other person but himself, or until the sliders had been rearranged so as to admit of its proper action. We may mention in pa.s.sing that the security of Bramah's locks depends on the doctrine of combinations, or multiplication of numbers into each other, which is known to increase in the most rapid proportion. Thus, a lock of five slides admits of 3,000 variations, while one of eight will have no less than 1,935,360 changes; in other words, that number of attempts at making a key, or at picking it, may be made before it can be opened.

[2] The weight raised by a single press at the Britannia Bridge was 1144 tons.

[3] Dr. Thomas Young, in his article on Bramah in the Encyclopaedia Britannica, describes the "rotative principle" as consisting in making the part which acts immediately on the water in the form of a slider, "sweeping round a cylindrical cavity, and kept in its place by means of an eccentric groove; a contrivance which was probably Bramah's own invention, but which had been before described, in a form nearly similar, by Ramelli, Ca.n.a.lleri, Amontons, Prince Rupert, and Dr. Hooke.

[4] A Letter to the Right Hon. Sir James Eyre, Lord Chief Justice of the Common Pleas, on the subject of the cause Boulton and Watt v.

Hornblower and Maberly, for Infringement on Mr. Watt's Patent for an Improvement of the Steam Engine. By Joseph Bramah, Engineer. London, 1797.

[5] Sir Samuel Bentham and Marc Isambard Brunel subsequently distinguished themselves by the invention of wood-working machinery, full accounts of which will be found in the Memoirs of the former by Lady Bentham, and in the Life of the latter by Mr. Beamish.

[6] "Record of the International Exhibition, 1862." Practical Mechanic's Journal, 293.

[7] In this, as in other methods of employing power, the moderns had been antic.i.p.ated by the ancients; and though hydraulic machinery is a comparatively recent invention in England, it had long been in use abroad. Thus we find in Dr. Bright's Travels in Lower Hungary a full description of the powerful hydraulic machinery invented by M. Holl, Chief Engineer of the Imperial Mines, which had been in use since the year 1749, in pumping water from a depth of 1800 feet, from the silver and gold mines of Schemnitz and Kremnitz. A head of water was collected by forming a reservoir along the mountain side, from which it was conducted through water-tight cast-iron pipes erected perpendicularly in the mine-shaft. About forty-five fathoms down, the water descending through the pipe was forced by the weight of the column above it into the bottom of a perpendicular cylinder, in which it raised a water-tight piston. When forced up to a given point a self-acting stop-c.o.c.k shut off the pressure of the descending column, while a self-acting valve enabled the water contained in the cylinder to be discharged, on which the piston again descended, and the process was repeated like the successive strokes of a steam-engine. Pump-rods were attached to this hydraulic apparatus, which were carried to the bottom of the shaft, and each worked a pump at different levels, raising the water stage by stage to the level of the main adit. The pumps of these three several stages each raised 1790 cubic feet of water from a depth of 600 feet in the hour. The regular working of the machinery was aided by the employment of a balance-beam connected by a chain with the head of the large piston and pump-rods; and the whole of these powerful machines by means of three of which as much as 789,840 gallons of water were pumped out of the mines every 24 hours--were set in operation and regulated merely by the turning of a stopc.o.c.k. It will be observed that the arrangement thus briefly described was equally applicable to the working of machinery of all kinds, cranes, &c., as well as pumps; and it will be noted that, notwithstanding the ingenuity of Bramah, Armstrong, and other eminent English mechanics, the Austrian engineer Holl was thus decidedly beforehand with them in the practical application of the principles of hydrostatics.

[8] Dr. Brown published a brief memoir of his friend in the New Monthly Magazine for April, 1815, which has been the foundation of all the notices of Bramah's life that have heretofore appeared.

[9] Notwithstanding his well-known religious character, Bramah seems to have fallen under the grievous displeasure of William Huntington, S.S.

(Sinner Saved), described by Macaulay in his youth as "a worthless ugly lad of the name of Hunter," and in his manhood as "that remarkable impostor" (Essays, 1 vol. ed. 529). It seems that Huntington sought the professional services of Bramah when re-edifying his chapel in 1793; and at the conclusion of the work, the engineer generously sent the preacher a cheque for 8L. towards defraying the necessary expenses.

Whether the sum was less than Huntington expected, or from whatever cause, the S.S. contemptuously flung back the gift, as proceeding from an Arian whose religion was "unsavoury," at the same time hurling at the giver a number of texts conveying epithets of an offensive character. Bramah replied to the farrago of nonsense, which he characterised as "unmannerly, absurd, and illiterate that it must have been composed when the writer was intoxicated, mad, or under the influence of Lucifer," and he threatened that unless Huntington apologised for his gratuitous insults, he (Bramah) would a.s.suredly expose him. The mechanician nevertheless proceeded gravely to explain and defend his "profession of faith," which was altogether unnecessary.

On this Huntington returned to the charge, and directed against the mechanic a fresh volley of Scripture texts and phraseology, not without humour, if profanity be allowable in controversy, as where he says, "Poor man! he makes a good patent lock, but cuts a sad figure with the keys of the Kingdom of Heaven!" "What Mr. Bramah is," says S.S., "In respect to his character or conduct in life, as a man, a tradesman, a neighbour, a gentleman, a husband, friend, master, or subject, I know not. In all these characters he may s.h.i.+ne as a comet for aught I know; but he appears to me to be as far from any resemblance to a poor penitent or broken-hearted sinner as Jannes, Jambres, or Alexander the coppersmith!" Bramah rejoined by threatening to publish his a.s.sailant's letters, but Huntington antic.i.p.ated him in A Feeble Dispute with a Wise and Learned Man, 8vo. London, 1793, in which, whether justly or not, Huntington makes Bramah appear to murder the king's English in the most barbarous manner.

CHAPTER XII.

HENRY MAUDSLAY.

"The successful construction of all machinery depends on the perfection of the tools employed; and whoever is a master in the arts of tool-making possesses the key to the construction of all machines.....

The contrivance and construction of tools must therefore ever stand at the head of the industrial arts."--C. BABBAGE, Exposition of 1851.

Henry Maudslay was born at Woolwich towards the end of last century, in a house standing in the court at the back of the Salutation Inn, the entrance to which is nearly opposite the a.r.s.enal gates. His father was a native of Lancas.h.i.+re, descended from an old family of the same name, the head of which resided at Mawdsley Hall near Ormskirk at the beginning of the seventeenth century. The family were afterwards scattered, and several of its members became workmen. William Maudslay, the father of Henry, belonged to the neighbourhood of Bolton, where he was brought up to the trade of a joiner. His princ.i.p.al employment, while working at his trade in Lancas.h.i.+re, consisted in making the wood framing of cotton machinery, in the construction of which cast-iron had not yet been introduced. Having got into some trouble in his neighbourhood, through some alleged LIAISON, William enlisted in the Royal Artillery, and the corps to which he belonged was shortly after sent out to the West Indies. He was several times engaged in battle, and in his last action he was. .h.i.t by a musket-bullet in the throat. The soldier's stock which he wore had a piece cut out of it by the ball, the direction of which was diverted, and though severely wounded, his life was saved. He brought home the stock and preserved it as a relic, afterwards leaving it to his son. Long after, the son would point to the stock, hung up against his wall, and say "But for that bit of leather there would have been no Henry Maudslay."

The wounded artilleryman was invalided and sent home to Woolwich, the headquarters of his corps, where he was shortly after discharged.

Being a handy workman, he sought and obtained employment at the a.r.s.enal. He was afterwards appointed a storekeeper in the Dockyard.

It was during the former stage of William Maudslay's employment at Woolwich, that the subject of this memoir was born in the house in the court above mentioned, on the 22nd of August, 1771.

The boy was early set to work. When twelve years old he was employed as a "powder-monkey," in making and filling cartridges. After two years, he was pa.s.sed on to the carpenter's shop where his father worked, and there he became acquainted with tools and the art of working in wood and iron. From the first, the latter seems to have had by far the greatest charms for him. The blacksmiths' shop was close to the carpenters', and Harry seized every opportunity that offered of plying the hammer, the file, and the chisel, in preference to the saw and the plane. Many a cuff did the foreman of carpenters give him for absenting himself from his proper shop and stealing off to the smithy.

His propensity was indeed so strong that, at the end of a year, it was thought better, as he was a handy, clever boy, to yield to his earnest desire to be placed in the smithy, and he was removed thither accordingly in his fifteenth year.

His heart being now in his work, he made rapid progress, and soon became an expert smith and metal worker. He displayed his skill especially in forging light ironwork; and a favourite job of his was the making of "Trivets" out of the solid, which only the "dab hands" of the shop could do, but which he threw off with great rapidity in first rate style. These "Trivets" were made out of Spanish iron bolts--rare stuff, which, though exceedingly tough, forged like wax under the hammer. Even at the close of his life, when he had acquired eminent distinction as an inventor, and was a large employer of skilled labour, he looked back with pride to the forging of his early days in Woolwich a.r.s.enal. He used to describe with much gusto, how the old experienced hands, with whom he was a great favourite, would crowd about him when forging his "Trivets," some of which may to this day be in use among Woolwich housewives for supporting the toast-plate before the bright fire against tea time. This was, however, entirely contraband work, done "on the sly," and strictly prohibited by the superintending officer, who used kindly to signal his approach by blowing his nose in a peculiar manner, so that all forbidden jobs might be put out of the way by the time he entered the shop.

We have referred to Maudslay's early dexterity in trivet-making--a circ.u.mstance trifling enough in itself--for the purpose of ill.u.s.trating the progress which he had made in a branch of his art of the greatest importance in tool and machine making. Nothing pleased him more in his after life than to be set to work upon an unusual piece of forging, and to overcome, as none could do so cleverly as he, the difficulties which it presented. The pride of art was as strong in him as it must have been in the mediaeval smiths, who turned out those beautiful pieces of workmans.h.i.+p still regarded as the pride of our cathedrals and old mansions. In Maudslay's case, his dexterity as a smith was eventually directed to machinery, rather than ornamental work; though, had the latter been his line of labour, we do not doubt that he would have reached the highest distinction.

The manual skill which our young blacksmith had acquired was such as to give him considerable reputation in his craft, and he was spoken of even in the London shops as one of the most dexterous hands in the trade. It was this circ.u.mstance that shortly after led to his removal from the smithy in Woolwich a.r.s.enal to a sphere more suitable for the development of his mechanical ability.

We have already stated in the preceding memoir, that Joseph Bramah took out the first patent for his lock in 1784, and a second for its improvement several years later; but notwithstanding the acknowledged superiority of the new lock over all others, Bramah experienced the greatest difficulty in getting it manufactured with sufficient precision, and at such a price as to render it an article of extensive commerce. This arose from the generally inferior character of the workmans.h.i.+p of that day, as well as the clumsiness and uncertainty of the tools then in use. Bramah found that even the best manual dexterity was not to be trusted, and yet it seemed to be his only resource; for machine-tools of a superior kind had not yet been invented. In this dilemma he determined to consult an ingenious old German artisan, then working with William Moodie, a general blacksmith in Whitechapel. This German was reckoned one of the most ingenious workmen in London at the time. Bramah had several long interviews with him, with the object of endeavouring to solve the difficult problem of how to secure precise workmans.h.i.+p in lock-making. But they could not solve it; they saw that without better tools the difficulty was insuperable; and then Bramah began to fear that his lock would remain a mere mechanical curiosity, and be prevented from coming into general use.

He was indeed sorely puzzled what next to do, when one of the hammermen in Moodie's shop ventured to suggest that there was a young man in the Woolwich a.r.s.enal smithy, named Maudslay, who was so ingenious in such matters that "nothing bet him," and he recommended that Mr. Bramah should have a talk with him upon the subject of his difficulty.

Maudslay was at once sent for to Bramah's workshop, and appeared before the lock-maker, a tall, strong, comely young fellow, then only eighteen years old. Bramah was almost ashamed to lay his case before such a mere youth; but necessity constrained him to try all methods of accomplis.h.i.+ng his object, and Maudslay's suggestions in reply to his statement of the case were so modest, so sensible, and as the result proved, so practical, that the master was constrained to admit that the lad before him had an old head though set on young shoulders. Bramah decided to adopt the youth's suggestions, made him a present on the spot, and offered to give him a job if he was willing to come and work in a town shop. Maudslay gladly accepted the offer, and in due time appeared before Bramah to enter upon his duties.

As Maudslay had served no regular apprentices.h.i.+p, and was of a very youthful appearance, the foreman of the shop had considerable doubts as to his ability to take rank alongside his experienced hands. But Maudslay soon set his master's and the foreman's mind at rest.

Pointing to a worn-out vice-bench, he said to Bramah, "Perhaps if I can make that as good as new by six o'clock to-night, it will satisfy your foreman that I am ent.i.tled to rank as a tradesman and take my place among your men, even though I have not served a seven years'

apprentices.h.i.+p." There was so much self-reliant ability in the proposal, which was moreover so reasonable, that it was at once acceded to. Off went Maudslay's coat, up went his s.h.i.+rt sleeves, and to work he set with a will upon the old bench. The vice-jaws were re-steeled "in no time," filed up, re-cut, all the parts cleaned and made trim, and set into form again. By six o'clock, the old vice was screwed up to its place, its jaws were hardened and "let down" to proper temper, and the old bench was made to look so smart and neat that it threw all the neighbouring benches into the shade! Bramah and his foreman came round to see it, while the men of the shop looked admiringly on. It was examined and p.r.o.nounced "a first-rate job." This diploma piece of work secured Maudslay's footing, and next Monday morning he came on as one of the regular hands.

He soon took rank in the shop as a first-cla.s.s workman. Loving his art, he aimed at excellence in it, and succeeded. For it must be understood that the handicraftsman whose heart is in his calling, feels as much honest pride in turning out a piece of thoroughly good workmans.h.i.+p, as the sculptor or the painter does in executing a statue or a picture. In course of time, the most difficult and delicate jobs came to be entrusted to Maudslay; and nothing gave him greater pleasure than to be set to work upon an entirely new piece of machinery. And thus he rose, naturally and steadily, from hand to head work. For his manual dexterity was the least of his gifts. He possessed an intuitive power of mechanical a.n.a.lysis and synthesis. He had a quick eye to perceive the arrangements requisite to effect given purposes; and whenever a difficulty arose, his inventive mind set to work to overcome it.

His fellow-workmen were not slow to recognise his many admirable qualities, of hand, mind, and heart; and he became not only the favourite, but the hero of the shop. Perhaps he owed something to his fine personal appearance. Hence on gala-days, when the men turned out in procession, "Harry" was usually selected to march at their head and carry the flag. His conduct as a son, also, was as admirable as his qualities as a workman. His father dying shortly after Maudslay entered Bramah's concern, he was accustomed to walk down to Woolwich every Sat.u.r.day night, and hand over to his mother, for whom he had the tenderest regard, a considerable share of his week's wages, and this he continued to do as long as she lived.

Notwithstanding his youth, he was raised from one post to another, until he was appointed, by unanimous consent, the head foreman of the works; and was recognised by all who had occasion to do business there as "Bramah's right-hand man." He not only won the heart of his master, but--what proved of far greater importance to him--he also won the heart of his master's pretty housemaid, Sarah Tindel by name, whom he married, and she went hand-in-hand with him through life, an admirable "help meet," in every way worthy of the n.o.ble character of the great mechanic. Maudslay was found especially useful by his master in devising the tools for making his patent locks; and many were the beautiful contrivances which he invented for the purpose of ensuring their more accurate and speedy manufacture, with a minimum degree of labour, and without the need of any large amount of manual dexterity on the part of the workman. The lock was so delicate a machine, that the ident.i.ty of the several parts of which it was composed was found to be an absolute necessity. Mere handicraft, however skilled, could not secure the requisite precision of workmans.h.i.+p; nor could the parts be turned out in sufficient quant.i.ty to meet any large demand. It was therefore requisite to devise machine-tools which should not blunder, nor turn out imperfect work;--machines, in short, which should be in a great measure independent of the want of dexterity of individual workmen, but which should unerringly labour in their prescribed track, and do the work set them, even in the minutest details, after the methods designed by their inventor. In this department Maudslay was eminently successful, and to his laborious ingenuity, as first displayed in Bramah's workshops, and afterwards in his own establishment, we unquestionably owe much of the power and accuracy of our present self-acting machines.

Bramah himself was not backward in admitting that to Henry Maudslay's practical skill in contriving the machines for manufacturing his locks on a large scale, the success of his invention was in a great degree attributable. In further proof of his manual dexterity, it may be mentioned that he constructed with his own hands the identical padlock which so severely tested the powers of Mr. Hobbs in 1851. And when it is considered that the lock had been made for more than half a century, and did not embody any of the modern improvements, it will perhaps be regarded not only as creditable to the principles on which it was constructed, but to the workmans.h.i.+p of its maker, that it should so long have withstood the various mechanical dexterity to which it was exposed.

Besides the invention of improved machine-tools for the manufacture of locks, Maudslay was of further service to Bramah in applying the expedient to his famous Hydraulic Press, without which it would probably have remained an impracticable though a highly ingenious machine. As in other instances of great inventions, the practical success of the whole is often found to depend upon the action of some apparently trifling detail. This was especially the case with the hydraulic press; to which Maudslay added the essential feature of the self-tightening collar, above described in the memoir of Bramah. Mr.

James Nasmyth is our authority for ascribing this invention to Maudslay, who was certainly quite competent to have made it; and it is a matter of fact that Bramah's specification of the press says nothing of the hollow collar,[1] on which its efficient action mainly depends.

Mr. Nasmyth says--"Maudslay himself told me, or led me to believe, that it was he who invented the self-tightening collar for the hydraulic press, without which it would never have been a serviceable machine.

As the self-tightening collar is to the hydraulic press, so is the steamblast to the locomotive. It is the one thing needful that has made it effective in practice. If Maudslay was the inventor of the collar, that one contrivance ought to immortalize him. He used to tell me of it with great gusto, and I have no reason to doubt the correctness of his statement." Whoever really struck out the idea of the collar, displayed the instinct of the true inventor, who invariably seeks to accomplish his object by the adoption of the simplest possible means.

During the time that Maudslay held the important office of manager of Bramah's works, his highest wages were not more than thirty s.h.i.+llings a-week. He himself thought that he was worth more to his master--as indeed he was,--and he felt somewhat mortified that he should have to make an application for an advance; but the increasing expenses of his family compelled him in a measure to do so. His application was refused in such a manner as greatly to hurt his sensitive feelings; and the result was that he threw up his situation, and determined to begin working on his own account.

His first start in business was in the year 1797, in a small workshop and smithy situated in Wells Street, Oxford Street. It was in an awful state of dirt and dilapidation when he became its tenant. He entered the place on a Friday, but by the Sat.u.r.day evening, with the help of his excellent wife, he had the shop thoroughly cleaned, whitewashed, and put in readiness for beginning work on the next Monday morning. He had then the pleasure of hearing the roar of his own forge-fire, and the cheering ring of the hammer on his own anvil; and great was the pride he felt in standing for the first time within his own smithy and executing orders for customers on his own account. His first customer was an artist, who gave him an order to execute the iron work of a large easel, embodying some new arrangements; and the work was punctually done to his employer's satisfaction. Other orders followed, and he soon became fully employed. His fame as a first-rate workman was almost as great as that of his former master; and many who had been accustomed to do business with him at Pimlico followed him to Wells Street. Long years after, the thought of these early days of self-dependence and hard work used to set him in a glow, and he would dilate to his intimate friends up on his early struggles and his first successes, which were much more highly prized by him than those of his maturer years.

With a true love of his craft, Maudslay continued to apply himself, as he had done whilst working as Bramah's foreman, to the best methods of ensuring accuracy and finish of work, so as in a measure to be independent of the carelessness or want of dexterity of the workman.

With this object he aimed at the contrivance of improved machine-tools, which should be as much self-acting and self-regulating as possible; and it was while pursuing this study that he wrought out the important mechanical invention with which his name is usually identified--that of the Slide Rest. It continued to be his special delight, when engaged in the execution of any piece of work in which he took a personal interest, to introduce a system of ident.i.ty of parts, and to adapt for the purpose some one or other of the mechanical contrivances with which his fertile brain was always teeming. Thus it was from his desire to leave nothing to the chance of mere individual dexterity of hand that he introduced the slide rest in the lathe, and rendered it one of the most important of machine-tools. The first device of this kind was contrived by him for Bramah, in whose shops it continued in practical use long after he had begun business for himself. "I have seen the slide rest," says Mr. James Nasmyth, "the first that Henry Maudslay made, in use at Messrs. Bramah's workshops, and in it were all those arrangements which are to be found in the most modern slide rest of our own day,[2] all of which are the legitimate offspring of Maudslay's original rest. If this tool be yet extant, it ought to be preserved with the greatest care, for it was the beginning of those mechanical triumphs which give to the days in which we live so much of their distinguis.h.i.+ng character."

A very few words of explanation will serve to ill.u.s.trate the importance of Maudslay's invention. Every person is familiar with the uses of the common turning-lathe. It is a favourite machine with amateur mechanics, and its employment is indispensable for the execution of all kinds of rounded work in wood and metal. Perhaps there is no contrivance by which the skill of the handicraftsman has been more effectually aided than by this machine. Its origin is lost in the shades of antiquity. Its most ancient form was probably the potter's wheel, from which it advanced, by successive improvements, to its present highly improved form. It was found that, by whatever means a substance capable of being cut could be made to revolve with a circular motion round a fixed right line as a centre, a cutting tool applied to its surface would remove the inequalities so that any part of such surface should be equidistant from that centre. Such is the fundamental idea of the ordinary turning-lathe. The ingenuity and experience of mechanics working such an instrument enabled them to add many improvements to it; until the skilful artisan at length produced not merely circular turning of the most beautiful and accurate description, but exquisite figure-work, and complicated geometrical designs, depending upon the cycloidal and eccentric movements which were from time to time added to the machine.

The artisans of the Middle Ages were very skilful in the use of the lathe, and turned out much beautiful screen and stall work, still to be seen in our cathedrals, as well as twisted and swash-work for the bal.u.s.ters of staircases and other ornamental purposes. English mechanics seem early to have distinguished themselves as improvers of the lathe; and in Moxon's 'Treatise on Turning,' published in 1680, we find Mr. Thomas Oldfield, at the sign of the Flower-de-Luce, near the Savoy in the Strand, named as an excellent maker of oval-engines and swash-engines, showing that such machines were then in some demand.

The French writer Plumier[3] also mentions an ingenious modification of the lathe by means of which any kind of reticulated form could be given to the work; and, from it's being employed to ornament the handles of knives, it was called by him the "Machine a manche de Couteau d'Angleterre." But the French artisans were at that time much better skilled than the English in the use of tools, and it is most probable that we owe to the Flemish and French Protestant workmen who flocked into England in such large numbers during the religious persecutions of the sixteenth and seventeenth centuries, the improvement, if not the introduction, of the art of turning, as well as many other arts hereafter to be referred to. It is certain that at the period to which we refer numerous treatises were published in France on the art of turning, some of them of a most elaborate character. Such were the works of De la Hire,[4] who described how every kind of polygon might be made by the lathe; De la Condamine,[5] who showed how a lathe could turn all sorts of irregular figures by means of tracers; and of Grand Jean, Morin,[6] Plumier, Bergeron, and many other writers.

The work of Plumier is especially elaborate, entering into the construction of the lathe in its various parts, the making of the tools and cutters, and the different motions to be given to the machine by means of wheels, eccentrics, and other expedients, amongst which may be mentioned one very much resembling the slide rest and planing-machine combined.[7] From this work it appears that turning had long been a favourite pursuit in France with amateurs of all ranks, who spared no expense in the contrivance and perfection of elaborate machinery for the production of complex figures.[8] There was at that time a great pa.s.sion for automata in France, which gave rise to many highly ingenious devices, such as Camus's miniature carriage (made for Louis XIV. when a child), Degennes' mechanical peac.o.c.k, Vancanson's duck, and Maillardet's conjuror. It had the effect of introducing among the higher order of artists habits of nice and accurate workmans.h.i.+p in executing delicate pieces of machinery; and the same combination of mechanical powers which made the steel spider crawl, the duck quack, or waved the tiny rod of the magician, contributed in future years to purposes of higher import,--the wheels and pinions, which in these automata almost eluded the human senses by their minuteness, reappearing in modern times in the stupendous mechanism of our self-acting lathes, spinning-mules, and steam-engines.

"In our own country," says Professor Willis, "the literature of this subject is so defective that it is very difficult to discover what progress we were making during the seventeenth and eighteenth centuries." [9] We believe the fact to be, that the progress made in England down to the end of last century had been very small indeed, and that the lathe had experienced little or no improvement until Maudslay took it in hand. Nothing seems to have been known of the slide rest until he re-invented it and applied it to the production of machinery of a far more elaborate character than had ever before been contemplated as possible. Professor Willis says that Bramah's, in other words Maudslay's, slide rest of 1794 is so different from that described in the French 'Encyclopedie in 1772, that the two could not have had a common origin. We are therefore led to the conclusion that Maudslay's invention was entirely independent of all that had gone before, and that he contrived it for the special purpose of overcoming the difficulties which he himself experienced in turning out duplicate parts in large numbers. At all events, he was so early and zealous a promoter of its use, that we think he may, in the eyes of all practical mechanics, stand as the parent of its introduction to the workshops of England.

It is unquestionable that at the time when Maudslay began the improvement of machine-tools, the methods of working in wood and metals were exceedingly imperfect. Mr. William Fairbairn has stated that when he first became acquainted with mechanical engineering, about sixty years ago, there were no self-acting tools; everything was executed by hand. There were neither planing, slotting, nor shaping machines; and the whole stock of an engineering or machine establishment might be summed up in a few ill-constructed lathes, and a few drills and boring machines of rude construction.[10] Our mechanics were equally backward in contrivances for working in wood. Thus, when Sir Samuel Bentham made a tour through the manufacturing districts of England in 1791, he was surprised to find how little had been done to subst.i.tute the invariable accuracy of machinery for the uncertain dexterity of the human hand. Steam-power was as yet only employed in driving spinning-machines, rolling metals, pumping water, and such like purposes. In the working of wood no machinery had been introduced beyond the common turning-lathe and some saws, and a few boring tools used in making blocks for the navy. Even saws worked by inanimate force for slitting timber, though in extensive use in foreign countries, were nowhere to be found in Great Britain.[11] As everything depended on the dexterity of hand and correctness of eye of the workmen, the work turned out was of very unequal merit, besides being exceedingly costly. Even in the construction of comparatively simple machines, the expense was so great as to present a formidable obstacle to their introduction and extensive use; and but for the invention of machine-making tools, the use of the steam-engine in the various forms in which it is now applied for the production of power could never have become general.

In turning a piece of work on the old-fas.h.i.+oned lathe, the workman applied and guided his tool by means of muscular strength. The work was made to revolve, and the turner, holding the cutting tool firmly upon the long, straight, guiding edge of the rest, along which he carried it, and pressing its point firmly against the article to be turned, was thus enabled to reduce its surface to the required size and shape. Some dexterous turners were able, with practice and carefulness, to execute very clever pieces of work by this simple means. But when the article to be turned was of considerable size, and especially when it was of metal, the expenditure of muscular strength was so great that the workman soon became exhausted. The slightest variation in the pressure of the tool led to an irregularity of surface; and with the utmost care on the workman's part, he could not avoid occasionally cutting a little too deep, in consequence of which he must necessarily go over the surface again, to reduce the whole to the level of that accidentally cut too deep; and thus possibly the job would be altogether spoiled by the diameter of the article under operation being made too small for its intended purpose.

Click Like and comment to support us!

RECENTLY UPDATED NOVELS

About Industrial Biography, Iron Workers and Tool Makers Part 12 novel

You're reading Industrial Biography, Iron Workers and Tool Makers by Author(s): Samuel Smiles. This novel has been translated and updated at LightNovelsOnl.com and has already 615 views. And it would be great if you choose to read and follow your favorite novel on our website. We promise you that we'll bring you the latest novels, a novel list updates everyday and free. LightNovelsOnl.com is a very smart website for reading novels online, friendly on mobile. If you have any questions, please do not hesitate to contact us at [email protected] or just simply leave your comment so we'll know how to make you happy.