LightNovesOnl.com

On the Origin of Species by Means of Natural Selection Part 13

On the Origin of Species by Means of Natural Selection - LightNovelsOnl.com

You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.

It is no real objection to the truth of the statement, that the fauna of each period as a whole is nearly intermediate in character between the preceding and succeeding faunas, that certain genera offer exceptions to the rule. For instance, mastodons and elephants, when arranged by Dr.

Falconer in two series, first according to their mutual affinities and then according to their periods of existence, do not accord in arrangement. The species extreme in character are not the oldest, or the most recent; nor are those which are intermediate in character, intermediate in age. But supposing for an instant, in this and other such cases, that the record of the first appearance and disappearance of the species was perfect, we have no reason to believe that forms successively produced necessarily endure for {335} corresponding lengths of time: a very ancient form might occasionally last much longer than a form elsewhere subsequently produced, especially in the case of terrestrial productions inhabiting separated districts. To compare small things with great: if the princ.i.p.al living and extinct races of the domestic pigeon were arranged as well as they could be in serial affinity, this arrangement would not closely accord with the order in time of their production, and still less with the order of their disappearance; for the parent rock-pigeon now lives; and many varieties between the rock-pigeon and the carrier have become extinct; and carriers which are extreme in the important character of length of beak originated earlier than short-beaked tumblers, which are at the opposite end of the series in this same respect.

Closely connected with the statement, that the organic remains from an intermediate formation are in some degree intermediate in character, is the fact, insisted on by all palaeontologists, that fossils from two consecutive formations are far more closely related to each other, than are the fossils from two remote formations. Pictet gives as a well-known instance, the general resemblance of the organic remains from the several stages of the Chalk formation, though the species are distinct in each stage. This fact alone, from its generality, seems to have shaken Professor Pictet in his firm belief in the immutability of species. He who is acquainted with the distribution of existing species over the globe, will not attempt to account for the close resemblance of the distinct species in closely consecutive formations, by the physical conditions of the ancient areas having remained nearly the same. Let it be remembered that the forms of life, at least those inhabiting the sea, have changed almost simultaneously throughout the world, and therefore under the most different climates and conditions. Consider the {336} prodigious vicissitudes of climate during the pleistocene period, which includes the whole glacial period, and note how little the specific forms of the inhabitants of the sea have been affected.

On the theory of descent, the full meaning of the fact of fossil remains from closely consecutive formations, though ranked as distinct species, being closely related, is obvious. As the acc.u.mulation of each formation has often been interrupted, and as long blank intervals have intervened between successive formations, we ought not to expect to find, as I attempted to show in the last chapter, in any one or two formations all the intermediate varieties between the species which appeared at the commencement and close of these periods; but we ought to find after intervals, very long as measured by years, but only moderately long as measured geologically, closely allied forms, or, as they have been called by some authors, representative species; and these we a.s.suredly do find. We find, in short, such evidence of the slow and scarcely sensible mutation of specific forms, as we have a just right to expect to find.

_On the state of Development of Ancient Forms._--There has been much discussion whether recent forms are more highly developed than ancient. I will not here enter on this subject, for naturalists have not as yet defined to each other's satisfaction what is meant by high and low forms.

The best definition probably is, that the higher forms have their organs more distinctly specialised for different functions; and as such division of physiological labour seems to be an advantage to each being, natural selection will constantly tend in so far to make the later and more modified forms higher than their early progenitors, or than the slightly modified descendants of such progenitors. In a more general sense the {337} more recent forms must, on my theory, be higher than the more ancient; for each new species is formed by having had some advantage in the struggle for life over other and preceding forms. If under a nearly similar climate, the eocene inhabitants of one quarter of the world were put into compet.i.tion with the existing inhabitants of the same or some other quarter, the eocene fauna or flora would certainly be beaten and exterminated; as would a secondary fauna by an eocene, and a palaeozoic fauna by a secondary fauna. I do not doubt that this process of improvement has affected in a marked and sensible manner the organisation of the more recent and victorious forms of life, in comparison with the ancient and beaten forms; but I can see no way of testing this sort of progress. Crustaceans, for instance, not the highest in their own cla.s.s, may have beaten the highest molluscs. From the extraordinary manner in which European productions have recently spread over New Zealand, and have seized on places which must have been previously occupied, we may believe, if all the animals and plants of Great Britain were set free in New Zealand, that in the course of time a mult.i.tude of British forms would become thoroughly naturalized there, and would exterminate many of the natives. On the other hand, from what we see now occurring in New Zealand, and from hardly a single inhabitant of the southern hemisphere having become wild in any part of Europe, we may doubt, if all the productions of New Zealand were set free in Great Britain, whether any considerable number would be enabled to seize on places now occupied by our native plants and animals. Under this point of view, the productions of Great Britain may be said to be higher than those of New Zealand. Yet the most skilful naturalist from an examination of the {338} species of the two countries could not have foreseen this result.

Aga.s.siz insists that ancient animals resemble to a certain extent the embryos of recent animals of the same cla.s.ses; or that the geological succession of extinct forms is in some degree parallel to the embryological development of recent forms. I must follow Pictet and Huxley in thinking that the truth of this doctrine is very far from proved. Yet I fully expect to see it hereafter confirmed, at least in regard to subordinate groups, which have branched off from each other within comparatively recent times.

For this doctrine of Aga.s.siz accords well with the theory of natural selection. In a future chapter I shall attempt to show that the adult differs from its embryo, owing to variations supervening at a not early age, and being inherited at a corresponding age. This process, whilst it leaves the embryo almost unaltered, continually adds, in the course of successive generations, more and more difference to the adult.

Thus the embryo comes to be left as a sort of picture, preserved by nature, of the ancient and less modified condition of each animal. This view may be true, and yet it may never be capable of full proof. Seeing, for instance, that the oldest known mammals, reptiles, and fish strictly belong to their own proper cla.s.ses, though some of these old forms are in a slight degree less distinct from each other than are the typical members of the same groups at the present day, it would be vain to look for animals having the common embryological character of the Vertebrata, until beds far beneath the lowest Silurian strata are discovered--a discovery of which the chance is very small.

_On the Succession of the same Types within the same {339} areas, during the later tertiary periods._--Mr. Clift many years ago showed that the fossil mammals from the Australian caves were closely allied to the living marsupials of that continent. In South America, a similar relations.h.i.+p is manifest, even to an uneducated eye, in the gigantic pieces of armour like those of the armadillo, found in several parts of La Plata; and Professor Owen has shown in the most striking manner that most of the fossil mammals, buried there in such numbers, are related to South American types. This relations.h.i.+p is even more clearly seen in the wonderful collection of fossil bones made by MM. Lund and Clausen in the caves of Brazil. I was so much impressed with these facts that I strongly insisted, in 1839 and 1845, on this "law of the succession of types,"--on "this wonderful relations.h.i.+p in the same continent between the dead and the living." Professor Owen has subsequently extended the same generalisation to the mammals of the Old World. We see the same law in this author's restorations of the extinct and gigantic birds of New Zealand. We see it also in the birds of the caves of Brazil. Mr. Woodward has shown that the same law holds good with sea-sh.e.l.ls, but from the wide distribution of most genera of molluscs, it is not well displayed by them. Other cases could be added, as the relation between the extinct and living land-sh.e.l.ls of Madeira; and between the extinct and living brackish-water sh.e.l.ls of the Aralo-Caspian Sea.

Now what does this remarkable law of the succession of the same types within the same areas mean? He would be a bold man, who after comparing the present climate of Australia and of parts of South America under the same lat.i.tude, would attempt to account, on the one hand, by dissimilar physical conditions for the dissimilarity of the inhabitants of these two continents, {340} and, on the other hand, by similarity of conditions, for the uniformity of the same types in each during the later tertiary periods.

Nor can it be pretended that it is an immutable law that marsupials should have been chiefly or solely produced in Australia; or that Edentata and other American types should have been solely produced in South America. For we know that Europe in ancient times was peopled by numerous marsupials; and I have shown in the publications above alluded to, that in America the law of distribution of terrestrial mammals was formerly different from what it now is. North America formerly partook strongly of the present character of the southern half of the continent; and the southern half was formerly more closely allied, than it is at present, to the northern half. In a similar manner we know from Falconer and Cautley's discoveries, that northern India was formerly more closely related in its mammals to Africa than it is at the present time. a.n.a.logous facts could be given in relation to the distribution of marine animals.

On the theory of descent with modification, the great law of the long enduring, but not immutable, succession of the same types within the same areas, is at once explained; for the inhabitants of each quarter of the world will obviously tend to leave in that quarter, during the next succeeding period of time, closely allied though in some degree modified descendants. If the inhabitants of one continent formerly differed greatly from those of another continent, so will their modified descendants still differ in nearly the same manner and degree. But after very long intervals of time and after great geographical changes, permitting much inter-migration, the feebler will yield to the more dominant forms, and there will be nothing immutable in the laws of past and present distribution. {341}

It may be asked in ridicule, whether I suppose that the megatherium and other allied huge monsters have left behind them in South America, the sloth, armadillo, and anteater, as their degenerate descendants. This cannot for an instant be admitted. These huge animals have become wholly extinct, and have left no progeny. But in the caves of Brazil, there are many extinct species which are closely allied in size and in other characters to the species still living in South America; and some of these fossils may be the actual progenitors of living species. It must not be forgotten that, on my theory, all the species of the same genus have descended from some one species; so that if six genera, each having eight species, be found in one geological formation, and in the next succeeding formation there be six other allied or representative genera with the same number of species, then we may conclude that only one species of each of the six older genera has left modified descendants, const.i.tuting the six new genera. The other seven species of the old genera have all died out and have left no progeny. Or, which would probably be a far commoner case, two or three species of two or three alone of the six older genera will have been the parents of the six new genera; the other old species and the other whole old genera having become utterly extinct. In failing orders, with the genera and species decreasing in numbers, as apparently is the case of the Edentata of South America, still fewer genera and species will have left modified blood-descendants.

_Summary of the preceding and present Chapters._--I have attempted to show that the geological record is extremely imperfect; that only a small portion of the globe has been geologically explored with care; that {342} only certain cla.s.ses of organic beings have been largely preserved in a fossil state; that the number both of specimens and of species, preserved in our museums, is absolutely as nothing compared with the incalculable number of generations which must have pa.s.sed away even during a single formation; that, owing to subsidence being necessary for the acc.u.mulation of fossiliferous deposits thick enough to resist future degradation, enormous intervals of time have elapsed between the successive formations; that there has probably been more extinction during the periods of subsidence, and more variation during the periods of elevation, and during the latter the record will have been least perfectly kept; that each single formation has not been continuously deposited; that the duration of each formation is, perhaps, short compared with the average duration of specific forms; that migration has played an important part in the first appearance of new forms in any one area and formation; that widely ranging species are those which have varied most, and have oftenest given rise to new species; and that varieties have at first often been local. All these causes taken conjointly, must have tended to make the geological record extremely imperfect, and will to a large extent explain why we do not find interminable varieties, connecting together all the extinct and existing forms of life by the finest graduated steps.

He who rejects these views on the nature of the geological record, will rightly reject my whole theory. For he may ask in vain where are the numberless transitional links which must formerly have connected the closely allied or representative species, found in the several stages of the same great formation. He may disbelieve in the enormous intervals of time which have elapsed between our consecutive formations; he {343} may overlook how important a part migration must have played, when the formations of any one great region alone, as that of Europe, are considered; he may urge the apparent, but often falsely apparent, sudden coming in of whole groups of species. He may ask where are the remains of those infinitely numerous organisms which must have existed long before the first bed of the Silurian system was deposited: I can answer this latter question only hypothetically, by saying that as far as we can see, where our oceans now extend they have for an enormous period extended, and where our oscillating continents now stand they have stood ever since the Silurian epoch; but that long before that period, the world may have presented a wholly different aspect; and that the older continents, formed of formations older than any known to us, may now all be in a metamorphosed condition, or may lie buried under the ocean.

Pa.s.sing from these difficulties, all the other great leading facts in palaeontology seem to me simply to follow on the theory of descent with modification through natural selection. We can thus understand how it is that new species come in slowly and successively; how species of different cla.s.ses do not necessarily change together, or at the same rate, or in the same degree; yet in the long run that all undergo modification to some extent. The extinction of old forms is the almost inevitable consequence of the production of new forms. We can understand why when a species has once disappeared it never reappears. Groups of species increase in numbers slowly, and endure for unequal periods of time; for the process of modification is necessarily slow, and depends on many complex contingencies. The dominant species of the larger dominant groups tend to leave many modified {344} descendants, and thus new sub-groups and groups are formed. As these are formed, the species of the less vigorous groups, from their inferiority inherited from a common progenitor, tend to become extinct together, and to leave no modified offspring on the face of the earth. But the utter extinction of a whole group of species may often be a very slow process, from the survival of a few descendants, lingering in protected and isolated situations. When a group has once wholly disappeared, it does not reappear; for the link of generation has been broken.

We can understand how the spreading of the dominant forms of life, which are those that oftenest vary, will in the long run tend to people the world with allied, but modified, descendants; and these will generally succeed in taking the places of those groups of species which are their inferiors in the struggle for existence. Hence, after long intervals of time, the productions of the world will appear to have changed simultaneously.

We can understand how it is that all the forms of life, ancient and recent, make together one grand system; for all are connected by generation. We can understand, from the continued tendency to divergence of character, why the more ancient a form is, the more it generally differs from those now living. Why ancient and extinct forms often tend to fill up gaps between existing forms, sometimes blending two groups previously cla.s.sed as distinct into one; but more commonly only bringing them a little closer together. The more ancient a form is, the more often, apparently, it displays characters in some degree intermediate between groups now distinct; for the more ancient a form is, the more nearly it will be related to, and consequently resemble, the common progenitor of groups, since {345} become widely divergent. Extinct forms are seldom directly intermediate between existing forms; but are intermediate only by a long and circuitous course through many extinct and very different forms. We can clearly see why the organic remains of closely consecutive formations are more closely allied to each other, than are those of remote formations; for the forms are more closely linked together by generation: we can clearly see why the remains of an intermediate formation are intermediate in character.

The inhabitants of each successive period in the world's history have beaten their predecessors in the race for life, and are, in so far, higher in the scale of nature; and this may account for that vague yet ill-defined sentiment, felt by many palaeontologists, that organisation on the whole has progressed. If it should hereafter be proved that ancient animals resemble to a certain extent the embryos of more recent animals of the same cla.s.s, the fact will be intelligible. The succession of the same types of structure within the same areas during the later geological periods ceases to be mysterious, and is simply explained by inheritance.

If then the geological record be as imperfect as I believe it to be, and it may at least be a.s.serted that the record cannot be proved to be much more perfect, the main objections to the theory of natural selection are greatly diminished or disappear. On the other hand, all the chief laws of palaeontology plainly proclaim, as it seems to me, that species have been produced by ordinary generation: old forms having been supplanted by new and improved forms of life, produced by the laws of variation still acting round us, and preserved by Natural Selection.

{346}

CHAPTER XI.

GEOGRAPHICAL DISTRIBUTION.

Present distribution cannot be accounted for by differences in physical conditions--Importance of barriers--Affinity of the productions of the same continent--Centres of creation--Means of dispersal, by changes of climate and of the level of the land, and by occasional means--Dispersal during the Glacial period co-extensive with the world.

In considering the distribution of organic beings over the face of the globe, the first great fact which strikes us is, that neither the similarity nor the dissimilarity of the inhabitants of various regions can be accounted for by their climatal and other physical conditions. Of late, almost every author who has studied the subject has come to this conclusion. The case of America alone would almost suffice to prove its truth: for if we exclude the northern parts where the circ.u.mpolar land is almost continuous, all authors agree that one of the most fundamental divisions in geographical distribution is that between the New and Old Worlds; yet if we travel over the vast American continent, from the central parts of the United States to its extreme southern point, we meet with the most diversified conditions; the most humid districts, arid deserts, lofty mountains, gra.s.sy plains, forests, marshes, lakes, and great rivers, under almost every temperature. There is hardly a climate or condition in the Old World which cannot be paralleled in the New--at least as closely as the same species generally require; for it is a most rare case to find a group of organisms confined to any small spot, having conditions peculiar in only a slight {347} degree; for instance, small areas in the Old World could be pointed out hotter than any in the New World, yet these are not inhabited by a peculiar fauna or flora. Notwithstanding this parallelism in the conditions of the Old and New Worlds, how widely different are their living productions!

In the southern hemisphere, if we compare large tracts of land in Australia, South Africa, and western South America, between lat.i.tudes 25 and 35, we shall find parts extremely similar in all their conditions, yet it would not be possible to point out three faunas and floras more utterly dissimilar. Or again we may compare the productions of South America south of lat. 35 with those north of 25, which consequently inhabit a considerably different climate, and they will be found incomparably more closely related to each other, than they are to the productions of Australia or Africa under nearly the same climate. a.n.a.logous facts could be given with respect to the inhabitants of the sea.

A second great fact which strikes us in our general review is, that barriers of any kind, or obstacles to free migration, are related in a close and important manner to the differences between the productions of various regions. We see this in the great difference of nearly all the terrestrial productions of the New and Old Worlds, excepting in the northern parts, where the land almost joins, and where, under a slightly different climate, there might have been free migration for the northern temperate forms, as there now is for the strictly arctic productions. We see the same fact in the great difference between the inhabitants of Australia, Africa, and South America under the same lat.i.tude: for these countries are almost as much isolated from each other as is possible. On each continent, also, we see the same fact; for on the opposite sides of {348} lofty and continuous mountain-ranges, and of great deserts, and sometimes even of large rivers, we find different productions; though as mountain-chains, deserts, &c., are not as impa.s.sable, or likely to have endured so long as the oceans separating continents, the differences are very inferior in degree to those characteristic of distinct continents.

Turning to the sea, we find the same law. No two marine faunas are more distinct, with hardly a fish, sh.e.l.l, or crab in common, than those of the eastern and western sh.o.r.es of South and Central America; yet these great faunas are separated only by the narrow, but impa.s.sable, isthmus of Panama.

Westward of the sh.o.r.es of America, a wide s.p.a.ce of open ocean extends, with not an island as a halting-place for emigrants; here we have a barrier of another kind, and as soon as this is pa.s.sed we meet in the eastern islands of the Pacific, with another and totally distinct fauna. So that here three marine faunas range far northward and southward, in parallel lines not far from each other, under corresponding climates; but from being separated from each other by impa.s.sable barriers, either of land or open sea, they are wholly distinct. On the other hand, proceeding still further westward from the eastern islands of the tropical parts of the Pacific, we encounter no impa.s.sable barriers, and we have innumerable islands as halting-places, or continuous coasts, until after travelling over a hemisphere we come to the sh.o.r.es of Africa; and over this vast s.p.a.ce we meet with no well-defined and distinct marine faunas. Although hardly one sh.e.l.l, crab or fish is common to the above-named three approximate faunas of Eastern and Western America and the eastern Pacific islands, yet many fish range from the Pacific into the Indian Ocean, and many sh.e.l.ls are common to the eastern islands of the Pacific {349} and the eastern sh.o.r.es of Africa, on almost exactly opposite meridians of longitude.

A third great fact, partly included in the foregoing statements, is the affinity of the productions of the same continent or sea, though the species themselves are distinct at different points and stations. It is a law of the widest generality, and every continent offers innumerable instances. Nevertheless the naturalist in travelling, for instance, from north to south never fails to be struck by the manner in which successive groups of beings, specifically distinct, yet clearly related, replace each other. He hears from closely allied, yet distinct kinds of birds, notes nearly similar, and sees their nests similarly constructed, but not quite alike, with eggs coloured in nearly the same manner. The plains near the Straits of Magellan are inhabited by one species of Rhea (American ostrich), and northward the plains of La Plata by another species of the same genus; and not by a true ostrich or emu, like those found in Africa and Australia under the same lat.i.tude. On these same plains of La Plata, we see the agouti and bizcacha, animals having nearly the same habits as our hares and rabbits and belonging to the same order of Rodents, but they plainly display an American type of structure. We ascend the lofty peaks of the Cordillera and we find an alpine species of bizcacha; we look to the waters, and we do not find the beaver or musk-rat, but the coypu and capybara, rodents of the American type. Innumerable other instances could be given. If we look to the islands off the American sh.o.r.e, however much they may differ in geological structure, the inhabitants, though they may be all peculiar species, are essentially American. We may look back to past ages, as shown in the last chapter, and we find American types then prevalent on {350} the American continent and in the American seas. We see in these facts some deep organic bond, prevailing throughout s.p.a.ce and time, over the same areas of land and water, and independent of their physical conditions. The naturalist must feel little curiosity, who is not led to inquire what this bond is.

This bond, on my theory, is simply inheritance, that cause which alone, as far as we positively know, produces organisms quite like, or, as we see in the case of varieties, nearly like each other. The dissimilarity of the inhabitants of different regions may be attributed to modification through natural selection, and in a quite subordinate degree to the direct influence of different physical conditions. The degree of dissimilarity will depend on the migration of the more dominant forms of life from one region into another having been effected with more or less ease, at periods more or less remote;--on the nature and number of the former immigrants;--and on their action and reaction, in their mutual struggles for life;--the relation of organism to organism being, as I have already often remarked, the most important of all relations. Thus the high importance of barriers comes into play by checking migration; as does time for the slow process of modification through natural selection.

Widely-ranging species, abounding in individuals, which have already triumphed over many compet.i.tors in their own widely-extended homes will have the best chance of seizing on new places, when they spread into new countries. In their new homes they will be exposed to new conditions, and will frequently undergo further modification and improvement; and thus they will become still further victorious, and will produce groups of modified descendants. On this principle of inheritance with modification, we can understand how it is that sections of genera, whole genera, {351} and even families are confined to the same areas, as is so commonly and notoriously the case.

I believe, as was remarked in the last chapter, in no law of necessary development. As the variability of each species is an independent property, and will be taken advantage of by natural selection, only so far as it profits the individual in its complex struggle for life, so the degree of modification in different species will be no uniform quant.i.ty. If, for instance, a number of species, which stand in direct compet.i.tion with each other, migrate in a body into a new and afterwards isolated country, they will be little liable to modification; for neither migration nor isolation in themselves can do anything. These principles come into play only by bringing organisms into new relations with each other, and in a lesser degree with the surrounding physical conditions. As we have seen in the last chapter that some forms have retained nearly the same character from an enormously remote geological period, so certain species have migrated over vast s.p.a.ces, and have not become greatly modified.

On these views, it is obvious, that the several species of the same genus, though inhabiting the most distant quarters of the world, must originally have proceeded from the same source, as they have descended from the same progenitor. In the case of those species, which have undergone during whole geological periods but little modification, there is not much difficulty in believing that they may have migrated from the same region; for during the vast geographical and climatal changes which will have supervened since ancient times, almost any amount of migration is possible. But in many other cases, in which we have reason to believe that the species of a genus have been produced within comparatively recent times, there is great difficulty on this head. It {352} is also obvious that the individuals of the same species, though now inhabiting distant and isolated regions, must have proceeded from one spot, where their parents were first produced: for, as explained in the last chapter, it is incredible that individuals identically the same should ever have been produced through natural selection from parents specifically distinct.

We are thus brought to the question which has been largely discussed by naturalists, namely, whether species have been created at one or more points of the earth's surface. Undoubtedly there are very many cases of extreme difficulty, in understanding how the same species could possibly have migrated from some one point to the several distant and isolated points, where now found. Nevertheless the simplicity of the view that each species was first produced within a single region captivates the mind. He who rejects it, rejects the _vera causa_ of ordinary generation with subsequent migration, and calls in the agency of a miracle. It is universally admitted, that in most cases the area inhabited by a species is continuous; and when a plant or animal inhabits two points so distant from each other, or with an interval of such a nature, that the s.p.a.ce could not be easily pa.s.sed over by migration, the fact is given as something remarkable and exceptional. The capacity of migrating across the sea is more distinctly limited in terrestrial mammals, than perhaps in any other organic beings; and, accordingly, we find no inexplicable cases of the same mammal inhabiting distant points of the world. No geologist will feel any difficulty in such cases as Great Britain having been formerly united to Europe, and consequently possessing the same quadrupeds. But if the same species can be produced at two separate points, why do we not find a single mammal common to Europe and {353} Australia or South America? The conditions of life are nearly the same, so that a mult.i.tude of European animals and plants have become naturalised in America and Australia; and some of the aboriginal plants are identically the same at these distant points of the northern and southern hemispheres? The answer, as I believe, is, that mammals have not been able to migrate, whereas some plants, from their varied means of dispersal, have migrated across the vast and broken inters.p.a.ce. The great and striking influence which barriers of every kind have had on distribution, is intelligible only on the view that the great majority of species have been produced on one side alone, and have not been able to migrate to the other side. Some few families, many sub-families, very many genera, and a still greater number of sections of genera are confined to a single region; and it has been observed by several naturalists, that the most natural genera, or those genera in which the species are most closely related to each other, are generally local, or confined to one area. What a strange anomaly it would be, if, when coming one step lower in the series, to the individuals of the same species, a directly opposite rule prevailed; and species were not local, but had been produced in two or more distinct areas!

Hence it seems to me, as it has to many other naturalists, that the view of each species having been produced in one area alone, and having subsequently migrated from that area as far as its powers of migration and subsistence under past and present conditions permitted, is the most probable. Undoubtedly many cases occur, in which we cannot explain how the same species could have pa.s.sed from one point to the other. But the geographical and climatal changes, which have certainly occurred within recent geological times, must have interrupted or rendered discontinuous the {354} formerly continuous range of many species. So that we are reduced to consider whether the exceptions to continuity of range are so numerous and of so grave a nature, that we ought to give up the belief, rendered probable by general considerations, that each species has been produced within one area, and has migrated thence as far as it could. It would be hopelessly tedious to discuss all the exceptional cases of the same species, now living at distant and separated points; nor do I for a moment pretend that any explanation could be offered of many such cases. But after some preliminary remarks, I will discuss a few of the most striking cla.s.ses of facts; namely, the existence of the same species on the summits of distant mountain-ranges, and at distant points in the arctic and antarctic regions; and secondly (in the following chapter), the wide distribution of freshwater productions; and thirdly, the occurrence of the same terrestrial species on islands and on the mainland, though separated by hundreds of miles of open sea. If the existence of the same species at distant and isolated points of the earth's surface, can in many instances be explained on the view of each species having migrated from a single birthplace; then, considering our ignorance with respect to former climatal and geographical changes and various occasional means of transport, the belief that this has been the universal law, seems to me incomparably the safest.

In discussing this subject, we shall be enabled at the same time to consider a point equally important for us, namely, whether the several distinct species of a genus, which on my theory have all descended from a common progenitor, can have migrated (undergoing modification during some part of their migration) from the area inhabited by their progenitor. If it can be shown to be almost invariably the case, that a region, of which {355} most of its inhabitants are closely related to, or belong to the same genera with the species of a second region, has probably received at some former period immigrants from this other region, my theory will be strengthened; for we can clearly understand, on the principle of modification, why the inhabitants of a region should be related to those of another region, whence it has been stocked. A volcanic island, for instance, upheaved and formed at the distance of a few hundreds of miles from a continent, would probably receive from it in the course of time a few colonists, and their descendants, though modified, would still be plainly related by inheritance to the inhabitants of the continent. Cases of this nature are common, and are, as we shall hereafter more fully see, inexplicable on the theory of independent creation. This view of the relation of species in one region to those in another, does not differ much (by subst.i.tuting the word variety for species) from that lately advanced in an ingenious paper by Mr. Wallace, in which he concludes, that "every species has come into existence coincident both in s.p.a.ce and time with a pre-existing closely allied species." And I now know from correspondence, that this coincidence he attributes to generation with modification.

The previous remarks on "single and multiple centres of creation" do not directly bear on another allied question,--namely whether all the individuals of the same species have descended from a single pair, or single hermaphrodite, or whether, as some authors suppose, from many individuals simultaneously created. With those organic beings which never intercross (if such exist), the species, on my theory, must have descended from a succession of improved varieties, which will never have blended with other individuals or varieties, but will have supplanted each other; so that, at each {356} successive stage of modification and improvement, all the individuals of each variety will have descended from a single parent.

But in the majority of cases, namely, with all organisms which habitually unite for each birth, or which often intercross, I believe that during the slow process of modification the individuals of the species will have been kept nearly uniform by intercrossing; so that many individuals will have gone on simultaneously changing, and the whole amount of modification will not have been due, at each stage, to descent from a single parent. To ill.u.s.trate what I mean: our English racehorses differ slightly from the horses of every other breed; but they do not owe their difference and superiority to descent from any single pair, but to continued care in selecting and training many individuals during many generations.

Before discussing the three cla.s.ses of facts, which I have selected as presenting the greatest amount of difficulty on the theory of "single centres of creation," I must say a few words on the means of dispersal.

_Means of Dispersal._--Sir C. Lyell and other authors have ably treated this subject. I can give here only the briefest abstract of the more important facts. Change of climate must have had a powerful influence on migration: a region when its climate was different may have been a high road for migration, but now be impa.s.sable; I shall, however, presently have to discuss this branch of the subject in some detail. Changes of level in the land must also have been highly influential: a narrow isthmus now separates two marine faunas; submerge it, or let it formerly have been submerged, and the two faunas will now blend or may formerly have blended: where the sea now extends, land may at a former period have connected islands or {357} possibly even continents together, and thus have allowed terrestrial productions to pa.s.s from one to the other. No geologist will dispute that great mutations of level have occurred within the period of existing organisms. Edward Forbes insisted that all the islands in the Atlantic must recently have been connected with Europe or Africa, and Europe likewise with America. Other authors have thus hypothetically bridged over every ocean, and have united almost every island to some mainland. If indeed the arguments used by Forbes are to be trusted, it must be admitted that scarcely a single island exists which has not recently been united to some continent. This view cuts the Gordian knot of the dispersal of the same species to the most distant points, and removes many a difficulty: but to the best of my judgment we are not authorized in admitting such enormous geographical changes within the period of existing species. It seems to me that we have abundant evidence of great oscillations of level in our continents; but not of such vast changes in their position and extension, as to have united them within the recent period to each other and to the several intervening oceanic islands. I freely admit the former existence of many islands, now buried beneath the sea, which may have served as halting places for plants and for many animals during their migration. In the coral-producing oceans such sunken islands are now marked, as I believe, by rings of coral or atolls standing over them. Whenever it is fully admitted, as I believe it will some day be, that each species has proceeded from a single birthplace, and when in the course of time we know something definite about the means of distribution, we shall be enabled to speculate with security on the former extension of the land. But I do not believe that it will ever be proved that within the {358} recent period continents which are now quite separate, have been continuously, or almost continuously, united with each other, and with the many existing oceanic islands. Several facts in distribution,--such as the great difference in the marine faunas on the opposite sides of almost every continent,--the close relation of the tertiary inhabitants of several lands and even seas to their present inhabitants,--a certain degree of relation (as we shall hereafter see) between the distribution of mammals and the depth of the sea,--these and other such facts seem to me opposed to the admission of such prodigious geographical revolutions within the recent period, as are necessitated on the view advanced by Forbes and admitted by his many followers. The nature and relative proportions of the inhabitants of oceanic islands likewise seem to me opposed to the belief of their former continuity with continents. Nor does their almost universally volcanic composition favour the admission that they are the wrecks of sunken continents;--if they had originally existed as mountain-ranges on the land, some at least of the islands would have been formed, like other mountain-summits, of granite, metamorphic schists, old fossiliferous or other such rocks, instead of consisting of mere piles of volcanic matter.

I must now say a few words on what are called accidental means, but which more properly might be called occasional means of distribution. I shall here confine myself to plants. In botanical works, this or that plant is stated to be ill adapted for wide dissemination; but for transport across the sea, the greater or less facilities may be said to be almost wholly unknown. Until I tried, with Mr. Berkeley's aid, a few experiments, it was not even known how far seeds could resist the injurious action of sea-water. To my surprise I found that {359} out of 87 kinds, 64 germinated after an immersion of 28 days, and a few survived an immersion of 137 days.

For convenience' sake I chiefly tried small seeds, without the capsule or fruit; and as all of these sank in a few days, they could not be floated across wide s.p.a.ces of the sea, whether or not they were injured by the salt-water. Afterwards I tried some larger fruits, capsules, &c., and some of these floated for a long time. It is well known what a difference there is in the buoyancy of green and seasoned timber; and it occurred to me that floods might wash down plants or branches, and that these might be dried on the banks, and then by a fresh rise in the stream be washed into the sea.

Hence I was led to dry stems and branches of 94 plants with ripe fruit, and to place them on sea-water. The majority sank quickly, but some which whilst green floated for a very short time, when dried floated much longer; for instance, ripe hazel-nuts sank immediately, but when dried they floated for 90 days, and afterwards when planted they germinated; an asparagus plant with ripe berries floated for 23 days, when dried it floated for 85 days, and the seeds afterwards germinated; the ripe seeds of Helosciadium sank in two days, when dried they floated for above 90 days, and afterwards germinated. Altogether out of the 94 dried plants, 18 floated for above 28 days, and some of the 18 floated for a very much longer period. So that as 64/87 seeds germinated after an immersion of 28 days; and as 18/94 plants with ripe fruit (but not all the same species as in the foregoing experiment) floated, after being dried, for above 28 days, as far as we may infer anything from these scanty facts, we may conclude that the seeds of 14/100 plants of any country might be floated by sea-currents during 28 days, and would retain their power of germination. In Johnston's Physical Atlas, the average {360} rate of the several Atlantic currents is 33 miles per diem (some currents running at the rate of 60 miles per diem); on this average, the seeds of 14/100 plants belonging to one country might be floated across 924 miles of sea to another country; and when stranded, if blown to a favourable spot by an inland gale, they would germinate.

Subsequently to my experiments, M. Martens tried similar ones, but in a much better manner, for he placed the seeds in a box in the actual sea, so that they were alternately wet and exposed to the air like really floating plants. He tried 98 seeds, mostly different from mine; but he chose many large fruits and likewise seeds from plants which live near the sea; and this would have favoured the average length of their flotation and of their resistance to the injurious action of the salt-water. On the other hand he did not previously dry the plants or branches with the fruit; and this, as we have seen, would have caused some of them to have floated much longer.

The result was that 18/98 of his seeds floated for 42 days, and were then capable of germination. But I do not doubt that plants exposed to the waves would float for a less time than those protected from violent movement as in our experiments. Therefore it would perhaps be safer to a.s.sume that the seeds of about 10/100 plants of a flora, after having been dried, could be floated across a s.p.a.ce of sea 900 miles in width, and would then germinate.

The fact of the larger fruits often floating longer than the small, is interesting; as plants with large seeds or fruit could hardly be transported by any other means; and Alph. de Candolle has shown that such plants generally have restricted ranges.

But seeds may be occasionally transported in another manner. Drift timber is thrown up on most islands, {361} even on those in the midst of the widest oceans; and the natives of the coral-islands in the Pacific, procure stones for their tools, solely from the roots of drifted trees, these stones being a valuable royal tax. I find on examination, that when irregularly shaped stones are embedded in the roots of trees, small parcels of earth are very frequently enclosed in their interstices and behind them,--so perfectly that not a particle could be washed away in the longest transport: out of one small portion of earth thus _completely_ enclosed by wood in an oak about 50 years old, three dicotyledonous plants germinated: I am certain of the accuracy of this observation. Again, I can show that the carca.s.ses of birds, when floating on the sea, sometimes escape being immediately devoured; and seeds of many kinds in the crops of floating birds long retain their vitality: peas and vetches, for instance, are killed by even a few days' immersion in sea-water; but some taken out of the crop of a pigeon, which had floated on artificial salt-water for 30 days, to my surprise nearly all germinated.

Living birds can hardly fail to be highly effective agents in the transportation of seeds. I could give many facts showing how frequently birds of many kinds are blown by gales to vast distances across the ocean.

We may I think safely a.s.sume that under such circ.u.mstances their rate of flight would often be 35 miles an hour; and some authors have given a far higher estimate. I have never seen an instance of nutritious seeds pa.s.sing through the intestines of a bird; but hard seeds of fruit pa.s.s uninjured through even the digestive organs of a turkey. In the course of two months, I picked up in my garden 12 kinds of seeds, out of the excrement of small birds, and these seemed perfect, and some of them, which I tried, germinated. {362} But the following fact is more important: the crops of birds do not secrete gastric juice, and do not in the least injure, as I know by trial, the germination of seeds; now after a bird has found and devoured a large supply of food, it is positively a.s.serted that all the grains do not pa.s.s into the gizzard for 12 or even 18 hours. A bird in this interval might easily be blown to the distance of 500 miles, and hawks are known to look out for tired birds, and the contents of their torn crops might thus readily get scattered. Mr. Brent informs me that a friend of his had to give up flying carrier-pigeons from France to England, as the hawks on the English coast destroyed so many on their arrival. Some hawks and owls bolt their prey whole, and after an interval of from twelve to twenty hours, disgorge pellets, which, as I know from experiments made in the Zoological Gardens, include seeds capable of germination. Some seeds of the oat, wheat, millet, canary, hemp, clover, and beet germinated after having been from twelve to twenty-one hours in the stomachs of different birds of prey; and two seeds of beet grew after having been thus retained for two days and fourteen hours. Freshwater fish, I find, eat seeds of many land and water plants: fish are frequently devoured by birds, and thus the seeds might be transported from place to place. I forced many kinds of seeds into the stomachs of dead fish, and then gave their bodies to fis.h.i.+ng-eagles, storks, and pelicans; these birds after an interval of many hours, either rejected the seeds in pellets or pa.s.sed them in their excrement; and several of these seeds retained their power of germination. Certain seeds, however, were always killed by this process.

Click Like and comment to support us!

RECENTLY UPDATED NOVELS

About On the Origin of Species by Means of Natural Selection Part 13 novel

You're reading On the Origin of Species by Means of Natural Selection by Author(s): Charles Darwin. This novel has been translated and updated at LightNovelsOnl.com and has already 724 views. And it would be great if you choose to read and follow your favorite novel on our website. We promise you that we'll bring you the latest novels, a novel list updates everyday and free. LightNovelsOnl.com is a very smart website for reading novels online, friendly on mobile. If you have any questions, please do not hesitate to contact us at [email protected] or just simply leave your comment so we'll know how to make you happy.