LightNovesOnl.com

More Hunting Wasps Part 2

More Hunting Wasps - LightNovelsOnl.com

You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.

The Scolia's egg is in no way exceptional in shape. It is white, cylindrical, straight and about four millimetres long by one millimetre thick. (About.156 x.039 inch.--Translator's Note.) It is fixed, by its fore-end, upon the median line of the victim's abdomen, well to the rear of the legs, near the beginning of the brown patch formed by the ma.s.s of food under the skin.

I watch the hatching. The grub, still wearing upon its hinder parts the delicate pellicle which it has just shed, is fixed to the spot to which the egg itself adhered by its cephalic extremity. A striking spectacle, that of the feeble creature, only this moment hatched, boring, for its first mouthful, into the paunch of its enormous prey, which lies stretched upon its back. The nascent tooth takes a day over the difficult task. Next morning the skin has yielded; and I find the new-born larva with its head plunged into a small, round, bleeding wound.

In size the grub is the same as the egg, whose dimensions I have just given. Now the Cetonia-larva, to meet the Scolia's requirements, averages thirty millimetres in length by nine in thickness (1.17 x.35 inch.--Translator's Note.), whence follows that its bulk is six or seven hundred times as great as that of the newly-hatched grub of the Scolia. Here certainly is a quarry which, were it active and capable of wriggling and biting, would expose the nurseling to terrible attacks.

The danger has been averted by the mother's stiletto; and the fragile grub attacks the monster's paunch with as little hesitation as though it were sucking the breast.

Day by day the young Scolia's head penetrates farther into the Cetonia's belly. To pa.s.s through the narrow orifice made in the skin, the fore-part of the body contracts and lengthens out, as though drawn through a die-plate. The larva thus a.s.sumes a rather strange form. Its hinder half, which is constantly outside the victim's belly, has the shape and fulness usual in the larvae of the Digger-wasps, whereas the front half, which, once it has dived under the skin of the exploited victim, does not come out again until the time arrives for spinning the coc.o.o.n, tapers off suddenly into a snake-like neck. This front part is moulded, so to speak, by the narrow entrance-hole made in the skin and henceforth retains its slender formation. As a matter of fact, a similar configuration recurs, in varying degrees, in the larvae of the Digger-wasps whose ration consists of a bulky quarry which takes a long time to consume. These include the Languedocian Sphex, with her Ephippiger, and the Hairy Ammophila, with her Grey Worm. There is none of this sudden constriction, dividing the creature into two disparate halves, when the victuals consist of numerous and comparatively small items. The larva then retains its usual shape, being obliged to pa.s.s, at brief intervals, from one joint in its larder to the next.

From the first bite of the mandibles, until the whole head of game is consumed, the Scolia-larva is never seen to withdraw its head and its long neck from inside the creature which it is devouring. I suspect the reason of this persistence in attacking a single point; I even seem to perceive the need for a special art in the manner of eating. The Cetonia-larva is a square meal in itself, one large dish, which has to retain a suitable freshness until the end. The young Scolia, therefore, must attack with discretion, at the unvarying point chosen by the mother on the ventral surface, for the entrance-hole is at the exact point where the egg was fixed. As the nurseling's neck lengthens and dives deeper, the victim's entrails are nibbled gradually and methodically: first, the least essential; next, those whose removal leaves yet a remnant of life; lastly, those whose loss inevitably entails death, followed very soon by putrefaction.

At the first bites we see the victim's blood oozing through the wound.

It is a highly-elaborated fluid, easy of digestion, and forms a sort of milk-diet for the new-born grub. The little ogre's teat is the bleeding paunch of the Cetonia-larva. The latter will not die of the wound, at least not for some time. The next thing to be tackled is the fatty substance which wraps the internal organs in its delicate folds. This again is a loss which the Cetonia can suffer without dying then and there. Now comes the turn of the muscular layer which lines the skin; now, that of the essential organs; now, that of the nerve-centres and the trachean network, whereupon the last gleam of light is extinguished and the Cetonia reduced to a mere bag, empty but intact, save for the entrance-hole made in the middle of the belly. From now onwards, these remains may rot if they will: the Scolia, by its methodical fas.h.i.+on of consuming its victuals, has succeeded in keeping them fresh to the very last; and now you may see it, replete, s.h.i.+ning with health, withdraw its long neck from the bag of skin and prepare to weave the coc.o.o.n in which its development will be completed.

It is possible that I may not be quite accurate as to the precise order in which the organs are consumed, for it is not easy to perceive what happens inside the exploited larva's body. The ruling feature in this scientific method of eating, which proceeds from the parts less to the parts more necessary to preserve a remnant of life, is none the less obvious. If direct observation did not already to some degree confirm it, a mere examination of the half-eaten larva would do so in the most positive fas.h.i.+on.

The Cetonia-larva is at first a plump grub. Drained by the Scolia's tooth, it gradually becomes limp and wrinkled. In a few days' time it resembles a shrivelled bit of bacon-fat and then a bag whose two sides have fallen in. Yet this bit of bacon and this bag have the same characteristic look of fresh meat as had the grub before it was bitten into. Despite the persistent nibbling of the Scolia, life continues, holding at bay the inroads of putrefaction until the mandibles have given their last bites. Does not this remnant of tenacious vitality in itself show that the organs of primary importance are the last to be attacked? Does it not prove that there is a progressive dismemberment pa.s.sing from the less essential to the indispensable?

Would you like to see what becomes of a Cetonia-larva when the organism is wounded in its vital centres at the very beginning? The experiment is an easy one; and I made a point of trying it. A sewing-needle, first softened and flattened into a blade, then retempered and sharpened, gives me a most delicate scalpel. With this instrument I make a fine incision, through which I remove the ma.s.s of nerves whose remarkable structure we shall soon have occasion to study. The thing is done: the wound, which does not look serious, has left the creature a corpse, a real corpse. I lay my victim on a bed of moist earth, in a jar with a gla.s.s lid; in fact, I establish it in the same conditions as those of the larvae on which the Scoliae feed. By the next day, without changing shape, it has turned a repulsive brown; presently it dissolves into noisome putrescence. On the same bed of earth, under the same gla.s.s cover, in the same moist, warm atmosphere, the larvae three-quarters eaten by the Scoliae retain, on the contrary, the appearance of healthy flesh.

If a single stroke of my dagger, fas.h.i.+oned from the point of a needle, results in immediate death and early putrefaction; if the repeated bites of the Scolia gut the creature's body and reduce it almost to a skin without completely killing it, the striking contrast between these two results must be due to the relative importance of the organs injured. I destroy the nerve-centres and inevitably kill my larva, which is putrid by the following day; the Scolia attacks the reserves of fat, the blood, the muscles and does not kill its victim, which will provide it with wholesome food until the end. But it is clear that, if the Scolia were to set to work as I did, there would be nothing left, after the first few bites, but an actual corpse, discharging fluids which would be fatal to it within twenty-four hours. The mother, it is true, in order to a.s.sure the immobility of her prey, has injected the poison of her sting into the nerve-centres. Her operation cannot be compared with mine in any respect. She practises the method of the skilful physiologist who induces anaesthesia; I go to work like the butcher who chops, cuts and disembowels. The sting leaves the nerve-centres intact. Deprived of sensibility by the poison, they have lost the power of provoking muscular contractions; but who can say that, numbed as they are, they no longer serve to maintain a faint vitality? The flame is extinguished, but there is still a glowing speck upon the wick. I, a rough blunderer, do more than blow out the lamp: I throw away the wick and all is over.

The grub would do the same if it bit straight into the ma.s.s of nerves.

Everything confirms the fact: the Scolia and the other Hunting Wasps whose provisions consist of bulky heads of game are gifted with a special art of eating, an exquisitely delicate art which saves a remnant of life in the prey devoured, until it is all consumed. When the prey is a small one, this precaution is superfluous. Consider, for instance, the Bembex-grubs in the midst of their heap of Flies. The prey seized upon is broached on the back, the belly, the head, the thorax, indifferently.

The larva munches a given spot, which it leaves to munch a second, pa.s.sing to a third and a fourth, at the bidding of its changing whims.

It seems to taste and select, by repeated trials, the mouthfuls most to its liking. Thus bitton at several points, covered with wounds, the Fly is soon a shapeless ma.s.s which would putrefy very quickly if the meagre dish were not devoured at a single meal. Allow the Scolia-grub the same unlicensed gluttony: it would perish beside its corpulent victim, which should have kept fresh for a fortnight, but which almost from the beginning would be no more than a filthy putrescence.

This art of careful eating does not seem easy to practise: at least, the larva, if ever so little diverted from its usual courses, is no longer able to apply its talent as a capable trencherman. This will be proved by experiment. I must begin by observing that, when I spoke of my larva which turned putrid within twenty-four hours, I adopted an extreme case for the sake of greater clearness. The Scolia, taking its first bite, does not and cannot go to such lengths. Nevertheless it behooves us to enquire whether, in the consumption of the victuals, the initial point of attack is a matter of indifference and whether the rummaging through the entrails of the victim entails a determined order, without which success is uncertain or even impossible. To these delicate questions no one, I think, can reply. Where science is silent, perhaps the grub will speak. We will try.

I move from its position a Scolia-grub which has attained a quarter or a third of its full growth. The long neck plunged into the victim's belly is rather difficult to extract, because of the need of molesting the creature as little as possible. I succeed, by means of a little patience and repeated strokes with the tip of a paint-brush. I now turn the Cetonia-larva over, back uppermost, at the bottom of the little hollow made by pressing my finger in the layer of mould. Lastly, I place the Scolia on its victim's back. Here is my grub under the same conditions as just now, with this difference, that the back and not the belly of its victim is presented to its mandibles.

I watch it for a whole afternoon. It writhes about; it moves its little head now in this direction, now in that, frequently laying it on the Cetonia, but without fixing it anywhere. The day draws to a close; and still it has accomplished nothing. There are restless movements, nothing more. Hunger, I tell myself, will eventually induce it to bite. I am wrong. Next morning I find it more anxious than the day before and still groping about, without resolving to fix its mandibles anywhere. I leave it alone for half a day longer without obtaining any result. Yet twenty-four hours of abstinence must have awakened a good appet.i.te, above all in a creature which, if left undisturbed, would not have ceased eating.

Excessive hunger cannot induce it to nibble at an unlawful spot. Is this due to feebleness of the teeth? By no means: the Cetonia's skin is no tougher on the back than on the belly; moreover, the grub is capable of perforating the skin when it leaves the egg; a fortiori, it must be more capable of doing so now that it has attained a st.u.r.dy growth. Thus we see no lack of ability, but an obstinate refusal to nibble at a point which ought to be respected. Who knows? On this side perhaps the grub's dorsal vessel would be wounded, its heart, an organ indispensable to life. The fact remains that my attempts to make the grub tackle its victim from the back have failed. Does this mean that it entertains the least suspicion of the danger which it might incur were it to produce putrefaction by awkwardly carving its victuals from the back? It would be absurd to give such an idea a moment's consideration. Its refusal is dictated by a preordained decree which it is bound to obey.

My Scolia-grubs would die of starvation if I left them on their victim's back. I therefore restore matters as they were, with the Cetonia-larva belly uppermost and the young Scolia on top. I might utilise the subjects of my previous experiments; but, as I have to take precautions against the disturbance which may have been caused by the test already undergone, I prefer to operate on new patients, a luxury in which the richness of my menagerie allows me to indulge. I move the Scolia from its position, extract its head from the entrails of the Cetonia-larva and leave it to its own resources on its victim's belly. Betraying every symptom of uneasiness, the grub gropes, hesitates, casts about and does not insert its mandibles anywhere, though it is now the ventral surface which it is exploring. It would not display greater hesitation if placed on the back of the larva. I repeat, who knows? On this side it might perhaps injure the nervous plexus, which is even more essential than the dorsal vessel. The inexperienced grub must not drive in its mandibles at random; its future is jeopardized if it gives a single ill-judged bite.

If it gnaws at the spot where I myself operated with my needle wrought into a scalpel, its victuals will very soon turn putrid. Once more, then, we witness an absolute refusal to perforate the skin of the victim elsewhere than at the very point where the egg was fixed.

The mother selects this point, which is undoubtedly that most favourable to the future prosperity of the larva, though I am not able clearly to discern the reasons for her choice; she fixes the egg to it; and the place where the opening is to be made is henceforth determined. It is here that the grub must bite: only here, never elsewhere. Its invincible refusal to tackle the Cetonia in any other part, even though it should die of starvation, shews us how rigorous is the rule of conduct with which its instinct is inspired.

As it gropes about, the grub laid on the victim's ventral surface sooner or later rediscovers the gaping wound from which I have removed it. If this takes too long for my patience, I can myself guide its head to the place with the point of a paint-brush. The grub then recognizes the hole of its own making, slips its neck into it and little by little dives into the Cetonia's belly, so that the original state of affairs appears to be exactly restored. And yet its successful rearing is henceforth highly problematical. It is possible that the larva will prosper, complete its development and spin its coc.o.o.n; it is also possible--and the case is not unusual--that the Cetonia-larva will soon turn brown and putrid. We then see the Scolia itself turn brown, distended as it is with putrescent foodstuffs, and then cease all movement, without attempting to withdraw from the sanies. It dies on the spot, poisoned by its excessively high game.

What can be the meaning of this sudden corruption of the victuals, followed by the death of the Scolia, when everything appeared to have returned to its normal condition? I see only one explanation.

Disturbed in its activities and diverted from its usual courses by my interference, the grub, when replaced on the wound from which I extracted it, was unable to rediscover the lode at which it was working a few minutes earlier; it thrust its way at random into the victim's entrails; and a few untimely bites extinguished the last sparks of vitality. Its confusion rendered it clumsy; and the mistake cost it its life. It dies poisoned by the rich food which, if consumed according to the rules, should have made it grow plump and l.u.s.ty.

I was anxious to observe the deadly effects of a disturbed meal in another fas.h.i.+on. This time the victim itself shall disorder the grub's activities. The Cetonia-larva, as served up to the young Scolia by its mother, is profoundly paralysed. Its inertia is complete and so striking that it const.i.tutes one of the leading features of this narrative. But we will not antic.i.p.ate. For the moment, the thing is to subst.i.tute for this inert larva a similar larva, but one not paralysed, one very much alive. To ensure that it shall not double up and crush the grub, I confine myself to reducing it to helplessness, leaving it otherwise just as I extracted it from its burrow. I must also be careful of its legs and mandibles, the least touch of which would rip open the nurseling.

With a few turns of the finest wire I fix it to a little slab of cork, with its belly in the air. Next, to provide the grub with a ready-made hole, knowing that it will refuse to make one for itself, I contrive a slight incision in the skin, at the point where the Scolia lays her egg.

I now place the grub upon the larva, with its head touching the bleeding wound, and lay the whole on a bed of mould in a transparent beaker protected by a pane of gla.s.s.

Unable to move, to wriggle, to scratch with its legs or snap with its mandibles, the Cetonia-larva, a new Prometheus bound, offers its defenceless flanks to the little Vulture destined to devour its entrails. Without too much hesitation, the young Scolia settles down to the wound made by my scalpel, which to the grub represents the wound whence I have just removed it. It thrusts its neck into the belly of its prey; and for a couple of days all seems to go well. Then, lo and behold, the Cetonia turns putrid and the Scolia dies, poisoned by the ptomaines of the decomposing game! As before, I see it turn brown and die on the spot, still half inside the toxic corpse.

The fatal issue of my experiment is easily explained. The Cetonia-larva is alive in every sense. True, I have, by means of bonds, suppressed its outward movements, in order to provide the nurseling with a quiet meal, devoid of danger; but it was not in my power to subdue its internal movements, the quivering of the viscera and muscles irritated by its forced immobility and by the Scolia's bites. The victim is in possession of its full power of sensation; and it expresses the pain experienced as best it may, by contractions. Embarra.s.sed by these tremors, these twitches of suffering flesh, incommoded at every mouthful, the grub chews away at random and kills the larva almost as soon as it has started on it. In a victim paralysed by the regulation sting, the conditions would be very different. There are no external movements, nor any internal movements either, when the mandibles bite, because the victim is insensible. The grub, undisturbed in any way, is then able, with an unfaltering tooth, to pursue its scientific method of eating.

These marvellous results interested me too much not to inspire me with fresh devices when I pursued my investigations. Earlier enquiries had taught me that the larvae of the Digger-wasps are fairly indifferent to the nature of the game, though the mother always supplies them with the same diet. I had succeeded in rearing them on a great variety of prey, without paying regard to their normal fare. I shall return to this subject later, when I hope to demonstrate its great philosophical significance. Let us profit by these data and try to discover what happens when we give the Scolia food which is not properly its own.

I select from my heap of garden-mould, that inexhaustible mine, two larvae of the Rhinoceros Beetle, Oryctes nasicornis, about one-third full-grown, so that their size may not be out of proportion to the Scolia's. It is in fact almost identical with the size of the Cetonia.

I paralyse one of them by giving an injection of ammonia in the nerve-centres. I make a fine incision in its belly and I place the Scolia on the opening. The dish pleases my charge; and it would be strange indeed if this were not so, considering that another Scolia-grub, the larva of the Garden Scolia, feeds on the Oryctes.

The dish suits it, for before long it has burrowed half-way into the succulent paunch. This time all goes well. Will the rearing be successful? Not a bit of it! On the third day, the Oryctes decomposes and the Scolia dies. Which shall we hold responsible for the failure, myself or the grub? Myself who, perhaps too unskilfully, administered the injection of ammonia, or the grub which, a novice at dissecting a prey differing from its own, did not know how to practise its craft upon a changed victim and began to bite before the proper time?

In my uncertainty, I try again. This time I shall not interfere, so that my clumsiness cannot be to blame. As I described when speaking of the Cetonia-larva, the Oryctes-larva now lies bound, quite alive, on a strip of cork. As usual, I make a small opening in the belly, to entice the grub by means of a bleeding wound and facilitate its access. I obtain the same negative result. In a little while, the Oryctes is a noisome ma.s.s on which the nurseling lies poisoned. The failure was foreseen: to the difficulties presented by a prey unknown to my charge was added the commotion caused by the wriggling of an unparalysed animal.

We will try once more, this time with a victim paralysed not by me, an unskilled operator, but by an adept whose ability ranks so high that it is beyond discussion. Chance favours me to perfection: yesterday, in a warm sheltered corner, at the foot of a sandy bank, I discovered three cells of the Languedocian Sphex, each with its Ephippiger and the recently laid egg. This is the game I want, a corpulent prey, of a size suited to the Scolia and, what is more, in splendid condition, artistically paralysed according to rule by a master among masters.

As usual, I install my three Ephippigers in a gla.s.s jar, on a bed of mould; I remove the egg of the Sphex and on each victim, after slightly incising the skin of the belly, I place a young Scolia-grub. For three or four days my charges feed upon this game, so novel to them, without any sign of repugnance or hesitation. By the fluctuations of the digestive ca.n.a.l I perceive that the work of nutrition is proceeding as it should; things are happening just as if the dish were a Cetonia-larva. The change of diet, complete though it is, has in no way affected the appet.i.te of the Scolia-grubs. But this prosperous condition does not last long. About the fourth day, a little sooner in one case, a little later in another, the three Ephippigers become putrid and the Scoliae die at the same time.

This result is eloquent. Had I left the egg of the Sphex to hatch, the larva coming out of it would have fed upon the Ephippiger; and for the hundredth time I should have witnessed an incomprehensible spectacle, that of an animal which, devoured piecemeal for nearly a fortnight, grows thin and empty, shrivels up and yet retains to the very end the freshness peculiar to living flesh. Subst.i.tute for this Sphex-larva a Scolia-larva of almost the same size; let the dish be the same though the guest is different; and healthy live flesh is promptly replaced by pestilent rotten flesh. That which under the mandibles of the Sphex would for a long while have remained wholesome food promptly becomes a poisonous liquescence under the mandibles of the Scolia.

It is impossible to explain the preservation of the victuals until finally consumed by supposing that the venom injected by the Wasp when she delivers her paralysing stings possesses antiseptic properties.

The three Ephippigers were operated on by the Sphex. Able to keep fresh under the mandibles of the Sphex-larvae, why did they promptly go bad under the mandibles of the Scolia-larvae? Any idea of an antiseptic must needs be rejected: a liquid preservative which would act in the first case could not fail to act in the second, as its virtues would not depend on the teeth of the consumer.

Those of you who are versed in the knowledge attaching to this problem, investigate, I beg you, search, sift, see if you can discover the reason why the victuals keep fresh when consumed by a Sphex, whereas they promptly become putrid when consumed by a Scolia. For me, I see only one reason; and I very much doubt whether any one can suggest another.

Both larvae practise a special art of eating, which is determined by the nature of the game. The Sphex, when sitting down to an Ephippiger, the food that has fallen to its lot, knows thoroughly how to consume it and how to preserve, to the very end, the glimmer of life which keeps it fresh; but, if it has to browse upon a Cetonia-grub, whose different structure would confuse its talents as a dissector, it would soon have nothing before it but a heap of putrescence. The Scolia, in its turn, is familiar with the method of eating the Cetonia-grub, its invariable portion; but it does not understand the art of eating the Ephippiger, though the dish is to its taste. Unable to dissect this unknown species of game, its mandibles slash away at random, killing the creature outright as soon as they take their first bites of the deeper tissues of the victim. That is the whole secret.

One more word, on which I shall enlarge in another chapter. I observe that the Scoliae to which I give Ephippigers paralysed by the Sphex keep in excellent condition, despite the change of diet, so long as the provisions retain their freshness. They languish when the game goes high; and they die when putridity supervenes. Their death, therefore, is due not to an unaccustomed diet, but to poisoning by one or other of those terrible toxins which are engendered by animal corruption and which chemistry calls by the name of ptomaines. Therefore, notwithstanding the fatal outcome of my three attempts, I remain persuaded that the unfamiliar method of rearing would have been perfectly successful had the Ephippigers not gone bad, that is, if the Scoliae had known how to eat them according to the rules.

What a delicate and dangerous thing is the art of eating in these carnivorous larvae supplied with a single victim, which they have to spend a fortnight in consuming, on the express condition of not killing it until the very end! Could our physiological science, of which, with good reason, we are so proud, describe, without blundering, the method to be followed in the successive mouthfuls? How has a miserable grub learnt what our knowledge cannot tell us? By habit, the Darwinians will reply, who see in instinct an acquired habit.

Before deciding this serious matter, I will ask you to reflect that the first Wasp, of whatever kind, that thought of feeding her progeny on a Cetonia-grub or on any other large piece of game demanding long preservation could necessarily have left no descendants unless the art of consuming food without causing putrescence had been practised, with all its scrupulous caution, from the first generation onwards. Having as yet learnt nothing by habit or by atavistic transmission, since it was making a first beginning, the nurseling would bite into its provender at random. It would be starving, it would have no respect for its prey.

It would carve its joint at random; and we have just seen the fatal consequence of an ill-directed bite. It would perish--I have just proved this in the most positive manner--it would perish, poisoned by its victim, already dead and putrid.

To prosper, it would have, although a novice, to know what was permitted and what forbidden in ransacking the creature's entrails; nor would it be enough for the larva to be approximately in possession of this difficult secret: it would be indispensable that it should possess the secret completely, for a single bite, if delivered before the right moment, would inevitably involve its own demise. The Scoliae of my experiments are not novices, far from it: they are the descendants of carvers that have practised their art since Scoliae first came into the world; nevertheless they all perish from the decomposition of the rations supplied, when I try to feed them on Ephippigers paralysed by the Sphex. Very expert in the method of attacking the Cetonia, they do not know how to set about the business of discreetly consuming a species of game new to them. All that escapes them is a few details, for the trade of an ogre fed on live flesh is familiar to them in its general features; and these unheeded details are enough to turn their food into poison. What, then, happened in the beginning, when the larva bit for the first time into a luscious victim? The inexperienced creature perished; of that there is not a shadow of doubt, unless we admit an absurdity and imagine the larva of antiquity feeding upon those terrible ptomaines which so swiftly kill its descendants to-day.

Nothing will ever make me admit and no unprejudiced mind can admit that what was once food has become a horrible poison. What the larva of antiquity ate was live flesh and not putrescence. Nor can it be admitted that the chances of fortune can have led at the first trial to success in a system of nourishment so full of pit-falls: fortuitous results are preposterous amid so many complications. Either the feeding is strictly methodical at the beginning, in conformity with the organic exigencies of the prey devoured, and the Wasp established her race; or else it was hesitating, without determined rules, and the Wasp left no successor. In the first case we behold innate instinct; in the second acquired habit.

A strange acquisition, truly! An acquisition presumed to be made by an impossible creature; an acquisition supposed to develop in no less impossible successors! Though the snow-ball, slowly rolling, at last becomes an enormous sphere, it is still necessary that the starting-point shall not have been NIL. The big ball implies the little ball, as small as you please. Now, in harking back to the origin of these acquired habits, if I interrogate the possibilities I obtain zero as the only answer. If the animal does not know its trade thoroughly, if it has to acquire something, all the more if it has to acquire everything, it perishes: that is inevitable; without the little snow-ball the big snow-ball cannot be rolled. If it has nothing to acquire, if it knows all that it needs to know, it flourishes and leaves descendants behind it. But then it possesses innate instinct, the instinct which learns nothing and forgets nothing, the instinct which is steadfast throughout time.

The building up of theories has never appealed to me: I suspect them one and all. To argue nebulously upon dubious premises likes me no better. I observe, I experiment and I let the facts speak for themselves. We have just heard these facts. Let each now decide for himself whether instinct is an innate faculty or an acquired habit.

CHAPTER 4. THE CETONIA-LARVA.

The Scolia's feeding-period lasts, on the average, for a dozen days or so. By then the victuals are no more than a crumpled bag, a skin emptied of the last sc.r.a.p of nutriment. A little earlier, the russet-yellow tint announces the extinction of the last spark of life in the creature that is being devoured. The empty skin is pushed back to make s.p.a.ce; the dining-room, a shapeless cavity with crumbling walls, is tidied up a little; and the Scolia-grub sets to work on its coc.o.o.n without further delay.

The first courses form a general scaffolding, which finds a support here and there on the earthen walls, and consist of a rough, blood-red fabric. When the larva is merely laid, as required by my investigations, in a hollow made with the finger-tip in the bed of mould, it is not able to spin its coc.o.o.n, for want of a ceiling to which to fasten the upper threads of its network. To weave its coc.o.o.n, every spinning larva is compelled to isolate itself in a hammock slung in an open-work enclosure, which enables it to distribute its thread uniformly in all directions. If there be no ceiling, the upper part of the coc.o.o.n cannot be fas.h.i.+oned, because the worker lacks the necessary points of support.

Under these conditions my Scolia-grubs contrive at most to upholster their little pit with a thick down of reddish silk. Discouraged by futile endeavours, some of them die. It is as if they had been killed by the silk which they omit to disgorge because they are unable to make the right use of it. This, if we were not watchful, would be a very frequent cause of failure in our attempts at artificial rearing. But, once the danger has been perceived, the remedy is simple. I make a ceiling over the cavity by laying a short strip of paper above it. If I want to see how matters are progressing, I bend the strip into a semicircle, into a half-cylinder with open ends. Those who wish to play the breeder for themselves will be able to profit by these little practical details.

In twenty-four hours the coc.o.o.n is finished; at least, it no longer allows us to see the grub, which is doubtless making the walls of its dwelling still thicker. At first the coc.o.o.n is a vivid red; later it changes to a light chestnut-brown. Its form is that of an ellipsoid, with a major axis 26 millimetres in length, while the minor axis measures 11 millimetres. (1.014 x.429 inch.--Translator's Note.) These dimensions, which incidentally are inclined to vary slightly, are those of the female coc.o.o.ns. In the other s.e.x they are smaller and may measure as little as 17 millimetres in length by 7 millimetres in width. (.663 x.273 inch.--Translator's Note.)

Click Like and comment to support us!

RECENTLY UPDATED NOVELS

About More Hunting Wasps Part 2 novel

You're reading More Hunting Wasps by Author(s): Jean Henri Fabre. This novel has been translated and updated at LightNovelsOnl.com and has already 585 views. And it would be great if you choose to read and follow your favorite novel on our website. We promise you that we'll bring you the latest novels, a novel list updates everyday and free. LightNovelsOnl.com is a very smart website for reading novels online, friendly on mobile. If you have any questions, please do not hesitate to contact us at [email protected] or just simply leave your comment so we'll know how to make you happy.