LightNovesOnl.com

Essays Upon Some Controverted Questions Part 2

Essays Upon Some Controverted Questions - LightNovelsOnl.com

You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.

But the enormous influence which has thus been exerted by the Jewish and Christian Scriptures has had no necessary connection with cosmogonies, demonologies, and miraculous interferences. Their strength lies in their appeals, not to the reason, but to the ethical sense. I do not say that even the highest biblical ideal is exclusive of others or needs no supplement. But I do believe that the human race is not yet, possibly may never be, in a position to dispense with it.

{55}

I

THE RISE AND PROGRESS OF PALaeONTOLOGY

That application of the sciences of biology and geology, which is commonly known as palaeontology, took its origin in the mind of the first person who, finding something like a sh.e.l.l, or a bone, naturally embedded in gravel or rock, indulged in speculations upon the nature of this thing which he had dug out--this "fossil"--and upon the causes which had brought it into such a position. In this rudimentary form, a high antiquity may safely be ascribed to palaeontology, inasmuch as we know that, 500 years before the Christian era, the philosophic doctrines of Xenophanes were influenced by his observations upon the fossil remains exposed in the quarries of Syracuse. From this time forth not only the philosophers, but the poets, the historians, the geographers of antiquity occasionally refer to fossils; and, after the revival of learning, lively controversies arose respecting their real nature. But hardly more than two centuries have elapsed since this fundamental problem was first exhaustively treated; it was only in the last century that the archaeological value of fossils--their importance, I mean, as records of the history of the earth--was fully {56} recognised; the first adequate investigation of the fossil remains of any large group of vertebrated animals is to be found in Cuvier's _Recherches sur les Oss.e.m.e.ns Fossiles_, completed in 1822; and, so modern is stratigraphical palaeontology, that its founder, William Smith, lived to receive the just recognition of his services by the award of the first Wollaston Medal in 1831.



But, although palaeontology is a comparatively youthful scientific speciality, the ma.s.s of materials with which it has to deal is already prodigious. In the last fifty years the number of known fossil remains of invertebrated animals has been trebled or quadrupled. The work of interpretation of vertebrate fossils, the foundations of which were so solidly laid by Cuvier, was carried on, with wonderful vigour and success, by Aga.s.siz in Switzerland, by Von Meyer in Germany, and last, but not least, by Owen in this country, while, in later years, a mult.i.tude of workers have laboured in the same field. In many groups of the animal kingdom the number of fossil forms already known is as great as that of the existing species. In some cases it is much greater; and there are entire orders of animals of the existence of which we should know nothing except for the evidence afforded by fossil remains. With all this it may be safely a.s.sumed that, at the present moment, we are not acquainted with a t.i.the of the fossils which will sooner or later be discovered. If we may judge by the profusion yielded within the last few years by the Tertiary formations of North America, there seems to be no limit to the {57} mult.i.tude of Mammalian remains to be expected from that continent; and a.n.a.logy leads us to expect similar riches in Eastern Asia, whenever the Tertiary formations of that region are as carefully explored. Again, we have as yet almost everything to learn respecting the terrestrial population of the Mesozoic epoch--and it seems as if the Western territories of the United States were about to prove as instructive in regard to this point as they have in respect of tertiary life. My friend Professor Marsh informs me that, within two years, remains of more than 160 distinct individuals of mammals, belonging to twenty species and nine genera, have been found in a s.p.a.ce not larger than the floor of a good-sized room; while beds of the same age have yielded 300 reptiles, varying in size from a length of 60 feet or 80 feet to the dimensions of a rabbit.

The task which I have set myself to-night is to endeavour to lay before you, as briefly as possible, a sketch of the successive steps by which our present knowledge of the facts of palaeontology and of those conclusions from them which are indisputable, has been attained; and I beg leave to remind you, at the outset, that in attempting to sketch the progress of a branch of knowledge to which innumerable labours have contributed, my business is rather with generalisations than with details. It is my object to mark the epochs of palaeontology, not to recount all the events of its history.

That which I just now called the fundamental problem of palaeontology, the question which has to be {58} settled before any other can be profitably discussed, is this, What is the nature of fossils? Are they, as the healthy common sense of the ancient Greeks appears to have led them to a.s.sume without hesitation, the remains of animals and plants? Or are they, as was so generally maintained in the fifteenth, sixteenth, and seventeenth centuries, mere figured stones, portions of mineral matter which have a.s.sumed the forms of leaves and sh.e.l.ls and bones, just as those portions of mineral matter which we call crystals take on the form of regular geometrical solids? Or, again, are they, as others thought, the products of the germs of animals and of the seeds of plants which have lost their way, as it were, in the bowels of the earth, and have achieved only an imperfect and abortive development? It is easy to sneer at our ancestors for being disposed to reject the first in favour of one or other of the last two hypotheses; but it is much more profitable to try to discover why they, who were really not one whit less sensible persons than our excellent selves, should have been led to entertain views which strike us as absurd. The belief in what is erroneously called spontaneous generation, that is to say, in the development of living matter out of mineral matter, apart from the agency of pre-existing living matter, as an ordinary occurrence at the present day--which is still held by some of us, was universally accepted as an obvious truth by them. They could point to the arborescent forms a.s.sumed by h.o.a.r-frost and by sundry metallic minerals as evidence of the existence in nature of a "plastic {59} force" competent to enable inorganic matter to a.s.sume the form of organised bodies. Then, as every one who is familiar with fossils knows, they present innumerable gradations, from sh.e.l.ls and bones which exactly resemble the recent objects, to ma.s.ses of mere stone which, however accurately they repeat the outward form of the organic body, have nothing else in common with it; and, thence, to mere traces and faint impressions in the continuous substance of the rock. What we now know to be the results of the chemical changes which take place in the course of fossilisation, by which mineral is subst.i.tuted for organic substance, might, in the absence of such knowledge, be fairly interpreted as the expression of a process of development in the opposite direction--from the mineral to the organic. Moreover, in an age when it would have seemed the most absurd of paradoxes to suggest that the general level of the sea is constant, while that of the solid land fluctuates up and down through thousands of feet in a secular ground swell, it may well have appeared far less hazardous to conceive that fossils are sports of nature than to accept the necessary alternative, that all the inland regions and highlands, in the rocks of which marine sh.e.l.ls had been found, had once been covered by the ocean. It is not so surprising, therefore, as it may at first seem, that although such men as Leonardo da Vinci and Bernard Palissy took just views of the nature of fossils, the opinion of the majority of their contemporaries set strongly the other way; nor even that error maintained itself long after the {60} scientific grounds of the true interpretation of fossils had been stated, in a manner that left nothing to be desired, in the latter half of the seventeenth century. The person who rendered this good service to palaeontology was Nicolas Steno, professor of anatomy in Florence, though a Dane by birth. Collectors of fossils at that day were familiar with certain bodies termed "glossopetrae," and speculation was rife as to their nature. In the first half of the seventeenth century, Fabio Colonna had tried to convince his colleagues of the famous Accademia dei Lincei that the glossopetrae were merely fossil sharks' teeth, but his arguments made no impression. Fifty years later, Steno reopened the question, and, by dissecting the head of a shark and pointing out the very exact correspondence of its teeth with the glossopetrae, left no rational doubt as to the origin of the latter. Thus far, the work of Steno went little further than that of Colonna, but it fortunately occurred to him to think out the whole subject of the interpretation of fossils, and the result of his meditations was the publication, in 1669, of a little treatise with the very quaint t.i.tle of _De Solido intra Solidum naturaliter contento_. The general course of Steno's argument may be stated in a few words. Fossils are solid bodies which, by some natural process, have come to be contained within other solid bodies, namely, the rocks in which they are embedded; and the fundamental problem of palaeontology, stated generally, is this: "Given a body endowed with a certain shape and produced in accordance with natural laws, to find {61} in that body itself the evidence of the place and manner of its production."[8] The only way of solving this problem is by the application of the axiom that "like effects imply like causes," or as Steno puts it, in reference to this particular case, that "bodies which are altogether similar have been produced in the same way."[9] Hence, since the glossopetrae are altogether similar to sharks' teeth, they must have been produced by sharklike fishes; and since many fossil sh.e.l.ls correspond, down to the minutest details of structure, with the sh.e.l.ls of existing marine or freshwater animals, they must have been produced by similar animals; and the like reasoning is applied by Steno to the fossil bones of vertebrated animals, whether aquatic or terrestrial. To the obvious objection that many fossils are not altogether similar to their living a.n.a.logues, differing in substance while agreeing in form, or being mere hollows or impressions, the surfaces of which are figured in the same way as those of animal or vegetable organisms, Steno replies by pointing out the changes which take place in organic remains embedded in the earth, and how their solid substance may be dissolved away entirely, or replaced by mineral matter, until nothing is left of the original but a cast, an impression, or a mere trace of its contours. The principles of investigation thus excellently stated and ill.u.s.trated by Steno in 1669, are those which have, {62} consciously or unconsciously, guided the researches of palaeontologists ever since. Even that feat of palaeontology which has so powerfully impressed the popular imagination, the reconstruction of an extinct animal from a tooth or a bone, is based upon the simplest imaginable application of the logic of Steno. A moment's consideration will show, in fact, that Steno's conclusion that the glossopetrae are sharks' teeth implies the reconstruction of an animal from its tooth. It is equivalent to the a.s.sertion that the animal of which the glossopetrae are relics had the form and organisation of a shark; that it had a skull, a vertebral column, and limbs similar to those which are characteristic of this group of fishes; that its heart, gills, and intestines presented the peculiarities which those of all sharks exhibit; nay, even that any hard parts which its integument contained were of a totally different character from the scales of ordinary fishes. These conclusions are as certain as any based upon probable reasonings can be.

And they are so, simply because a very large experience justifies us in believing that teeth of this particular form and structure are invariably a.s.sociated with the peculiar organisation of sharks, and are never found in connection with other organisms. Why this should be we are not at present in a position even to imagine; we must take the fact as an empirical law of animal morphology, the reason of which may possibly be one day found in the history of the evolution of the shark tribe, but for which it is hopeless to seek for an explanation in ordinary physiological reasonings. Every one {63} practically acquainted with palaeontology is aware that it is not every tooth, nor every bone, which enables us to form a judgment of the character of the animal to which it belonged; and that it is possible to possess many teeth, and even a large portion of the skeleton of an extinct animal, and yet be unable to reconstruct its skull or its limbs. It is only when the tooth or bone presents peculiarities, which we know by previous experience to be characteristic of a certain group, that we can safely predict that the fossil belonged to an animal of the same group. Any one who finds a cow's grinder may be perfectly sure that it belonged to an animal which had two complete toes on each foot and ruminated; any one who finds a horse's grinder may be as sure that it had one complete toe on each foot and did not ruminate; but if ruminants and horses were extinct animals of which nothing but the grinders had ever been discovered, no amount of physiological reasoning could have enabled us to reconstruct either animal, still less to have divined the wide differences between the two. Cuvier, in the _Discours sur les Revolutions de la Surface du Globe_, strangely credits himself, and has ever since been credited by others, with the invention of a new method of palaeontological research. But if you will turn to the _Recherches sur les Oss.e.m.e.ns Fossiles_ and watch Cuvier, not speculating, but working, you will find that his method is neither more nor less than that of Steno. If he was able to make his famous prophecy from the jaw which lay upon the surface of a block of stone to the pelvis of the same animal which lay hidden in it, it was not {64} because either he, or any one else, knew, or knows, why a certain form of jaw is, as a rule, constantly accompanied by the presence of marsupial bones, but simply because experience has shown that these two structures are co-ordinated.

The settlement of the nature of fossils led at once to the next advance of palaeontology, viz. its application to the deciphering of the history of the earth. When it was admitted that fossils are remains of animals and plants, it followed that, in so far as they resemble terrestrial, or freshwater, animals and plants, they are evidences of the existence of land, or fresh water; and, in so far as they resemble marine organisms, they are evidences of the existence of the sea at the time at which they were parts of actually living animals and plants. Moreover, in the absence of evidence to the contrary, it must be admitted that the terrestrial or the marine organisms implied the existence of land or sea at the place in which they were found while they were yet living. In fact, such conclusions were immediately drawn by everybody, from the time of Xenophanes downwards, who believed that fossils were really organic remains. Steno discusses their value as evidence of repeated alteration of marine and terrestrial conditions upon the soil of Tuscany in a manner worthy of a modern geologist. The speculations of De Maillet in the beginning of the eighteenth century turn upon fossils; and Buffon follows him very closely in those two remarkable works, the _Theorie de la Terre_ and the _epoques de la Nature_, with {65} which he commenced and ended his career as a naturalist.

The opening sentences of the _epoques de la Nature_ show us how fully Buffon recognised the a.n.a.logy of geological with archaeological inquiries.

"As in civil history we consult deeds, seek for coins, or decipher antique inscriptions in order to determine the epochs of human revolutions and fix the date of moral events; so, in natural history, we must search the archives of the world, recover old monuments from the bowels of the earth, collect their fragmentary remains, and gather into one body of evidence all the signs of physical change which may enable us to look back upon the different ages of nature. It is our only means of fixing some points in the immensity of s.p.a.ce, and of setting a certain number of waymarks along the eternal path of time."

Buffon enumerates five cla.s.ses of these monuments of the past history of the earth, and they are all facts of palaeontology. In the first place, he says, sh.e.l.ls and other marine productions are found all over the surface and in the interior of the dry land; and all calcareous rocks are made up of their remains. Secondly, a great many of these sh.e.l.ls which are found in Europe are not now to be met with in the adjacent seas; and, in the slates and other deep-seated deposits, there are remains of fishes and of plants of which no species now exist in our lat.i.tudes, and which are either extinct, or exist only in more northern climates. Thirdly, in Siberia and in other northern regions of Europe and of Asia, bones and {66} teeth of elephants, rhinoceroses, and hippopotamuses occur in such numbers that these animals must once have lived and multiplied in those regions, although at the present day they are confined to southern climates. The deposits in which these remains are found are superficial, while those which contain sh.e.l.ls and other marine remains lie much deeper. Fourthly, tusks and bones of elephants and hippopotamuses are found not only in the northern regions of the old world, but also in those of the new world, although, at present, neither elephants nor hippopotamuses occur in America. Fifthly, in the middle of the continents, in regions most remote from the sea, we find an infinite number of sh.e.l.ls, of which the most part belong to animals of those kinds which still exist in southern seas, but of which many others have no living a.n.a.logues; so that these species appear to be lost, destroyed by some unknown cause. It is needless to inquire how far these statements are strictly accurate; they are sufficiently so to justify Buffon's conclusions that the dry land was once beneath the sea; that the formation of the fossiliferous rocks must have occupied a vastly greater lapse of time than that traditionally ascribed to the age of the earth; that fossil remains indicate different climatal conditions to have obtained in former times, and especially that the polar regions were once warmer; that many species of animals and plants have become extinct; and that geological change has had something to do with geographical distribution.

But these propositions almost const.i.tute the framework of palaeontology. In order to complete it but {67} one addition was needed, and that was made, in the last years of the eighteenth century, by William Smith, whose work comes so near our own times that many living men may have been personally acquainted with him. This modest land-surveyor, whose business took him into many parts of England, profited by the peculiarly favourable conditions offered by the arrangement of our secondary strata to make a careful examination and comparison of their fossil contents at different points of the large area over which they extend. The result of his accurate and widely-extended observations was to establish the important truth that each stratum contains certain fossils which are peculiar to it; and that the order in which the strata, characterised by these fossils, are superimposed one upon the other is always the same. This most important generalisation was rapidly verified and extended to all parts of the world accessible to geologists; and now it rests upon such an immense ma.s.s of observations as to be one of the best established truths of natural science. To the geologist the discovery was of infinite importance, as it enabled him to identify rocks of the same relative age, however their continuity might be interrupted or their composition altered. But to the biologist it had a still deeper meaning, for it demonstrated that, throughout the prodigious duration of time registered by the fossiliferous rocks, the living population of the earth had undergone continual changes, not merely by the extinction of a certain number of the species which had at first existed, but by the continual generation {68} of new species, and the no less constant extinction of old ones.

Thus the broad outlines of palaeontology, in so far as it is the common property of both the geologist and the biologist, were marked out at the close of the last century. In tracing its subsequent progress I must confine myself to the province of biology, and, indeed, to the influence of palaeontology upon zoological morphology. And I accept this limitation the more willingly as the no less important topic of the bearing of geology and of palaeontology upon distribution has been luminously treated in the address of the President of the Geographical Section.[10]

The succession of the species of animals and plants in time being established, the first question which the zoologist or the botanist had to ask himself was, What is the relation of these successive species one to another? And it is a curious circ.u.mstance that the most important event in the history of palaeontology which immediately succeeded William Smith's generalisation was a discovery which, could it have been rightly appreciated at the time, would have gone far towards suggesting the answer, which was in fact delayed for more than half a century. I refer to Cuvier's investigation of the Mammalian fossils yielded by the quarries in the older tertiary rocks of Montmartre, among the chief results of which was the bringing to light of two genera of extinct hoofed quadrupeds, the _Anoplotherium_ and the _Palaeotherium_. The rich materials at Cuvier's disposition enabled him {69} to obtain a full knowledge of the osteology and of the dent.i.tion of these two forms, and consequently to compare their structure critically with that of existing hoofed animals. The effect of this comparison was to prove that the _Anoplotherium_, though it presented many points of resemblance with the pigs on the one hand and with the ruminants on the other, differed from both to such an extent that it could find a place in neither group. In fact, it held, in some respects, an intermediate position, tending to bridge over the interval between these two groups, which in the existing fauna are so distinct. In the same way, the _Palaeotherium_ tended to connect forms so different as the tapir, the rhinoceros, and the horse. Subsequent investigations have brought to light a variety of facts of the same order, the most curious and striking of which are those which prove the existence, in the mesozoic epoch, of a series of forms intermediate between birds and reptiles--two cla.s.ses of vertebrate animals which at present appear to be more widely separated than any others. Yet the interval between them is completely filled, in the mesozoic fauna, by birds which have reptilian characters on the one side, and reptiles which have ornithic characters on the other. So again, while the group of fishes termed ganoids is at the present time so distinct from that of the dipnoi, or mudfishes, that they have been reckoned as distinct orders, the Devonian strata present us with forms of which it is impossible to say with certainty whether they are dipnoi or whether they are ganoids.

{70}

Aga.s.siz's long and elaborate researches upon fossil fishes, published between 1833 and 1842, led him to suggest the existence of another kind of relation between ancient and modern forms of life. He observed that the oldest fishes present many characters which recall the embryonic conditions of existing fishes; and that, not only among fishes, but in several groups of the invertebrata which have a long palaeontological history, the latest forms are more modified, more specialised, than the earlier. The fact that the dent.i.tion of the older tertiary ungulate and carnivorous mammals is always complete, noticed by Professor Owen, ill.u.s.trated the same generalisation.

Another no less suggestive observation was made by Mr. Darwin, whose personal investigations during the voyage of the _Beagle_ led him to remark upon the singular fact, that the fauna, which immediately precedes that at present existing in any geographical province of distribution, presents the same peculiarities as its successor. Thus, in South America and in Australia, the later tertiary or quaternary fossils show that the fauna which immediately preceded that of the present day was, in the one case, as much characterised by edentates and, in the other, by marsupials as it is now, although the species of the older are largely different from those of the newer fauna.

However clearly these indications might point in one direction, the question of the exact relation of the successive forms of animal and vegetable life could be satisfactorily settled only in one way; namely, by comparing, stage by stage, the series of {71} forms presented by one and the same type throughout a long s.p.a.ce of time. Within the last few years this has been done fully in the case of the horse, less completely in the case of the other princ.i.p.al types of the ungulata and of the carnivora; and all these investigations tend to one general result, namely, that, in any given series, the successive members of that series present a gradually increasing specialisation of structure. That is to say, if any such mammal at present existing has specially modified and reduced limbs or dent.i.tion and complicated brain, its predecessors in time show less and less modification and reduction in limbs and teeth and a less highly developed brain. The labours of Gaudry, Marsh, and Cope furnish abundant ill.u.s.trations of this law from the marvellous fossil wealth of Pikermi and the vast uninterrupted series of tertiary rocks in the territories of North America.

I will now sum up the results of this sketch of the rise and progress of palaeontology. The whole fabric of palaeontology is based upon two propositions: the first is, that fossils are the remains of animals and plants; and the second is, that the stratified rocks in which they are found are sedimentary deposits; and each of these propositions is founded upon the same axiom, that like effects imply like causes. If there is any cause competent to produce a fossil stem, or sh.e.l.l, or bone, except a living being, then palaeontology has no foundation; if the stratification of the rocks is not the effect of such causes as at present produce {72} stratification, we have no means of judging of the duration of past time, or of the order in which the forms of life have succeeded one another. But if these two propositions are granted, there is no escape, as it appears to me, from three very important conclusions. The first is that living matter has existed upon the earth for a vast length of time, certainly for millions of years. The second is that, during this lapse of time, the forms of living matter have undergone repeated changes, the effect of which has been that the animal and vegetable population, at any period of the earth's history, contains some species which did not exist at some antecedent period, and others which ceased to exist at some subsequent period. The third is that, in the case of many groups of mammals and some of reptiles, in which one type can be followed through a considerable extent of geological time, the series of different forms by which the type is represented, at successive intervals of this time, is exactly such as it would be, if they had been produced by the gradual modification of the earliest forms of the series. These are facts of the history of the earth guaranteed by as good evidence as any facts in civil history.

Hitherto I have kept carefully clear of all the hypotheses to which men have at various times endeavoured to fit the facts of palaeontology, or by which they have endeavoured to connect as many of these facts as they happened to be acquainted with. I do not think it would be a profitable employment of our time to discuss conceptions which doubtless have had their justification and even their use, but which {73} are now obviously incompatible with the well-ascertained truths of palaeontology. At present these truths leave room for only two hypotheses. The first is that, in the course of the history of the earth, innumerable species of animals and plants have come into existence, independently of one another, innumerable times. This, of course, implies either that spontaneous generation on the most astounding scale, and of animals such as horses and elephants, has been going on, as a natural process, through all the time recorded by the fossiliferous rocks; or it necessitates the belief in innumerable acts of creation repeated innumerable times. The other hypothesis is, that the successive species of animals and plants have arisen, the later by the gradual modification of the earlier. This is the hypothesis of evolution; and the palaeontological discoveries of the last decade are so completely in accordance with the requirements of this hypothesis that, if it had not existed, the palaeontologist would have had to invent it.

I have always had a certain horror of presuming to set a limit upon the possibilities of things. Therefore I will not venture to say that it is impossible that the mult.i.tudinous species of animals and plants may have been produced, one separately from the other, by spontaneous generation; nor that it is impossible that they should have been independently originated by an endless succession of miraculous creative acts. But I must confess that both these hypotheses strike me as so astoundingly improbable, so devoid of a shred of either scientific or traditional support, that even if {74} there were no other evidence than that of palaeontology in its favour, I should feel compelled to adopt the hypothesis of evolution.

Happily, the future of palaeontology is independent of all hypothetical considerations. Fifty years hence, whoever undertakes to record the progress of palaeontology will note the present time as the epoch in which the law of succession of the forms of the higher animals was determined by the observation of palaeontological facts. He will point out that, just as Steno and as Cuvier were enabled from their knowledge of the empirical laws of coexistence of the parts of animals to conclude from a part to the whole, so the knowledge of the law of succession of forms empowered their successors to conclude, from one or two terms of such a succession, to the whole series; and thus to divine the existence of forms of life, of which, perhaps, no trace remains, at epochs of inconceivable remoteness in the past.

{75}

II

THE INTERPRETERS OF GENESIS AND THE INTERPRETERS OF NATURE

Our fabulist warns "those who in quarrels interpose" of the fate which is probably in store for them; and, in venturing to place myself between so powerful a controversialist as Mr. Gladstone and the eminent divine whom he a.s.saults with such vigour in the last number of this Review,[11] I am fully aware that I run great danger of verifying Gay's prediction. Moreover, it is quite possible that my zeal in offering aid to a combatant so extremely well able to take care of himself as M. Reville may be thought to savour of indiscretion.

Two considerations, however, have led me to face the double risk. The one is that though, in my judgment, M. Reville is wholly in the right in that part of the controversy to which I propose to restrict my observations, nevertheless he, as a foreigner, has very little chance of making the truth prevail with Englishmen against the authority and the dialectic skill of the greatest master of persuasive rhetoric among English-speaking men of our time. {76} As the Queen's proctor intervenes, in certain cases, between two litigants in the interests of justice, so it may be permitted me to interpose as a sort of uncommissioned science proctor. My second excuse for my meddlesomeness is, that important questions of natural science--respecting which neither of the combatants professes to speak as an expert--are involved in the controversy; and I think it is desirable that the public should know what it is that natural science really has to say on these topics, to the best belief of one who has been a diligent student of natural science for the last forty years.

The original _Prolegomenes de l'histoire des Religions_ has not come in my way; but I have read the translation of M. Reville's work, published in England under the auspices of Professor Max Muller, with very great interest. It puts more fairly and clearly than any book previously known to me, the view which a man of strong religious feelings, but at the same time possessing the information and the reasoning power which enable him to estimate the strength of scientific methods of inquiry and the weight of scientific truth, may be expected to take of the relation between science and religion.

In the chapter on "The Primitive Revelation" the scientific worth of the account of the Creation given in the book of Genesis is estimated in terms which are as unquestionably respectful as, in my judgment, they are just; and, at the end of the chapter on "Primitive Tradition," M. Reville appraises the value of pentateuchal anthropology in a way which I should {77} have thought sure of enlisting the a.s.sent of all competent judges, even if it were extended to the whole of the cosmogony and biology of Genesis:--

As, however, the original traditions of nations sprang up in an epoch less remote than our own from the primitive life, it is indispensable to consult them, to compare them, and to a.s.sociate them with other sources of information which are available. From this point of view, the traditions recorded in Genesis possess, in addition to their own peculiar charm, a value of the highest order; but we cannot ultimately see in them more than a venerable fragment, well deserving attention, of the great genesis of mankind.

Mr. Gladstone is of a different mind. He dissents from M. Reville's views respecting the proper estimation of the pentateuchal traditions, no less than he does from his interpretation of those Homeric myths which have been the object of his own special study. In the latter case, Mr. Gladstone tells M. Reville that he is wrong on his own authority, to which, in such a matter, all will pay due respect: in the former, he affirms himself to be "wholly dest.i.tute of that kind of knowledge which carries authority," and his rebuke is administered in the name and by the authority of natural science.

An air of magisterial gravity hangs about the following pa.s.sage:--

But the question is not here of a lofty poem, or a skilfully constructed narrative: it is whether natural science, in the patient exercise of its high calling to examine facts, finds that the works of G.o.d cry out against what we have fondly believed to be His word and tell another tale; or whether, in this nineteenth century of Christian progress, it substantially echoes back the majestic sound, which, before it existed as a pursuit, went forth into all lands. {78}

First, looking largely at the latter portion of the narrative, which describes the creation of living organisms, and waiving details, on some of which (as in v. 24) the Septuagint seems to vary from the Hebrew, there is a grand fourfold division, set forth in an orderly succession of times as follows: on the fifth day

1. The water-population; 2. The air-population;

and, on the sixth day,

3. The land-population of animals; 4. The land-population consummated in man.

Now this same fourfold order is understood to have been so affirmed in our time by natural science, that it may be taken as a demonstrated conclusion and established fact (p. 696).

"Understood?" By whom? I cannot bring myself to imagine that Mr. Gladstone has made so solemn and authoritative a statement on a matter of this importance without due inquiry--without being able to found himself upon recognised scientific authority. But I wish he had thought fit to name the source from whence he has derived his information, as, in that case, I could have dealt with his authority, and I should have thereby escaped the appearance of making an attack on Mr. Gladstone himself, which is in every way distasteful to me.

For I can meet the statement in the last paragraph of the above citation with nothing but a direct negative. If I know anything at all about the results attained by the natural science of our time, it is "a demonstrated conclusion and established fact" that the "fourfold order" given by Mr.

Gladstone is not that in which the evidence at our disposal {79} tends to show that the water, air, and land-populations of the globe have made their appearance.

Perhaps I may be told that Mr. Gladstone does give his authority--that he cites Cuvier, Sir John Herschel, and Dr. Whewell in support of his case. If that has been Mr. Gladstone's intention in mentioning these eminent names, I may remark that, on this particular question, the only relevant authority is that of Cuvier. But great as Cuvier was, it is to be remembered that, as Mr. Gladstone incidentally remarks, he cannot now be called a recent authority. In fact, he has been dead more than half a century; and the palaeontology of our day is related to that of his, very much as the geography of the sixteenth century is related to that of the fourteenth.

Since 1832, when Cuvier died, not only a new world, but new worlds, of ancient life have been discovered; and those who have most faithfully carried on the work of the chief founder of palaeontology have done most to invalidate the essentially negative grounds of his speculative adherence to tradition.

If Mr. Gladstone's latest information on these matters is derived from the famous discourse prefixed to the _Oss.e.m.e.ns Fossiles_, I can understand the position he has taken up; if he has ever opened a respectable modern manual of palaeontology, or geology, I cannot. For the facts which demolish his whole argument are of the commonest notoriety. But before proceeding to consider the evidence for this a.s.sertion we must be clear about the meaning of the phraseology employed. {80}

I apprehend that when Mr. Gladstone uses the term "water-population" he means those animals which in Genesis i. 21 (Revised Version) are spoken of as "the great sea monsters and every living creature that moveth, which the waters brought forth abundantly, after their kind." And I presume that it will be agreed that whales and porpoises, sea fishes, and the innumerable hosts of marine invertebrated animals, are meant thereby. So "air-population" must be the equivalent of "fowl" in verse 20, and "every winged fowl after its kind," verse 21. I suppose I may take it for granted that by "fowl" we have here to understand birds--at any rate primarily.

Secondarily, it may be that the bats and the extinct pterodactyles, which were flying reptiles, come under the same head. But whether all insects are "creeping things" of the land-population, or whether flying insects are to be included under the denomination of "winged fowl," is a point for the decision of Hebrew exegetes. Lastly, I suppose I may a.s.sume that "land-population" signifies "the cattle" and "the beast of the earth," and "every creeping thing that creepeth upon the earth," in verses 25 and 26; presumably, it comprehends all kinds of terrestrial animals, vertebrate and invertebrate, except such as may be comprised under the head of the "air-population."

Now what I want to make clear is this: that if the terms "water-population," "air-population," and "land-population" are understood in the senses here defined, natural science has nothing to say in favour of the proposition that they succeeded one another in {81} the order given by Mr. Gladstone; but that, on the contrary, all the evidence we possess goes to prove that they did not. Whence it will follow that, if Mr. Gladstone has interpreted Genesis rightly (on which point I am most anxious to be understood to offer no opinion), that interpretation is wholly irreconcilable with the conclusions at present accepted by the interpreters of nature--with everything that can be called "a demonstrated conclusion and established fact" of natural science. And be it observed that I am not here dealing with a question of speculation, but with a question of fact.

Either the geological record is sufficiently complete to afford us a means of determining the order in which animals have made their appearance on the globe or it is not. If it is, the determination of that order is little more than a mere matter of observation; if it is not, then natural science neither affirms nor refutes the "fourfold order," but is simply silent.

Click Like and comment to support us!

RECENTLY UPDATED NOVELS

About Essays Upon Some Controverted Questions Part 2 novel

You're reading Essays Upon Some Controverted Questions by Author(s): Thomas Henry Huxley. This novel has been translated and updated at LightNovelsOnl.com and has already 590 views. And it would be great if you choose to read and follow your favorite novel on our website. We promise you that we'll bring you the latest novels, a novel list updates everyday and free. LightNovelsOnl.com is a very smart website for reading novels online, friendly on mobile. If you have any questions, please do not hesitate to contact us at [email protected] or just simply leave your comment so we'll know how to make you happy.