Aphorisms and Reflections from the Works of T. H. Huxley - LightNovelsOnl.com
You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.
From the consideration of these facts, Ehrenberg, as early as the year 1839, had arrived at the conclusion that rocks, altogether similar to those which const.i.tute a large part of the crust of the earth, must be forming, at the present day, at the bottom of the sea; and he threw out the suggestion that even where no trace of organic structure is to be found in the older rocks, it may have been lost by metamorphosis.
CCI
It is highly creditable to the ingenuity of our ancestors that the peculiar property of fermented liquids, in virtue of which they "make glad the heart of man," seems to have been known in the remotest periods of which we have any record. All savages take to alcoholic fluids as if they were to the manner born. Our Vedic forefathers intoxicated themselves with the juice of the "soma"; Noah, by a not unnatural reaction against a superfluity of water, appears to have taken the earliest practicable opportunity of qualifying that which he was obliged to drink; and the ghosts of the ancient Egyptians were solaced by pictures of banquets in which the wine-cup pa.s.ses round, graven on the walls of their tombs. A knowledge of the process of fermentation, therefore, was in all probability possessed by the prehistoric populations of the globe; and it must have become a matter of great interest even to primaeval wine-bibbers to study the methods by which fermented liquids could be surely manufactured. No doubt it was soon discovered that the most certain, as well as the most expeditious, way of making a sweet juice ferment was to add to it a little of the sc.u.m, or lees, of another fermenting juice. And it can hardly be questioned that this singular excitation of fermentation in one fluid, by a sort of infection, or inoculation, of a little ferment taken from some other fluid, together with the strange swelling, foaming, and hissing of the fermented substance, must have always attracted attention from the more thoughtful. Nevertheless, the commencement of the scientific a.n.a.lysis of the Sphenomena dates from a period not earlier than the first half of the seventeenth century. At this time, Van Helmont made a first step, by pointing out that the peculiar hissing and bubbling of a fermented liquid is due, not to the evolution of common air (which he, as the inventor of the term "gas," calls "gas ventosum"), but to that of a peculiar kind of air such as is occasionally met with in caves, mines, and wells, and which he calls "gas sylvestre."
But a century elapsed before the nature of this "gas sylvestre," or as it was afterwards called, "fixed air," was clearly determined, and it was found to be identical with that deadly "choke-damp" by which the lives of those who descend into old wells, or mines, or brewers' vats, are sometimes suddenly ended; and with the poisonous aeriform fluid which is produced by the combustion of charcoal, and now goes by the name of carbonic acid gas.
During the same time it gradually became evident that the presence of sugar was essential to the production of alcohol and the evolution of carbonic acid gas, which are the two great and conspicuous products of fermentation. And finally, in 1787, the Italian chemist, Fabroni, made the capital discovery that the yeast ferment, the presence of which is necessary to fermentation, is what he termed a "vegeto-animal" substance; that is, a body which gives off ammoniacal salts when it is burned, and is, in other ways, similar to the gluten of plants and the alb.u.men and casein of animals.
CCII
The living club-mosses are, for the most part, insignificant and creeping herbs, which, superficially, very closely resemble true mosses, and none of them reach more than two or three feet in height. But, in their essential structure, they very closely resemble the earliest Lepidodendroid trees of the coal: their stems and leaves are similar; so are their cones; and no less like are the sporangia and spores; while even in their size, the spores of the _Lepidodendron_ and those of the existing _Lycopodium_, or club-moss, very closely approach one another.
Thus, the singular conclusion is forced upon us, that the greater and the smaller sacs of the "Better-Bed" and other coals, in which the primitive structure is well preserved, are simply the sporangia and spores of certain plants, many of whicn were closely allied to the existing club-mosses. And if, as I believe, it can be demonstrated that ordinary coal Is nothing but "saccular" coal which has undergone a certain amount of that alteration which, if continued, would convert it into anthracite; then, the conclusion is obvious, that the great ma.s.s of the coal we burn is the result of the acc.u.mulation of the spores and spore-cases of plants, other parts of which have furnished the carbonized stems and the mineral charcoal, or have left their impressions on the surfaces of the layer.
CCIII
The position of the beds which const.i.tute the coal-measures is infinitely diverse. Sometimes they are tilted up vertically, sometimes they are horizontal, sometimes curved into great basins; sometimes they come to the surface, sometimes they are covered up by thousands of feet of rock. But, whatever then-present position, there is abundant and conclusive evidence that every under-clay was once a surface soil. Not only do carbonized root-fibres frequently abound in these under-clays; but the stools of trees, the trunks of which are broken off and confounded with the bed of coal, have been repeatedly found pa.s.sing into radiating roots, still embedded in the under-clay. On many parts of the coast of England, what are commonly known as "submarine forests" are to be seen at low water. They consist, for the most part, of short stools of oak, beech, and fir-trees, still fixed by their long roots in the bed of blue clay in which they originally grew. If one of these submarine forest beds should be gradually depressed and covered up by new deposits, it would present just the same characters as an under-clay of the coal, if the _Sigillaria_ and _Lepidodendron_ of the ancient world were subst.i.tuted for the oak, or the beech, of our own times.
In a tropical forest, at the present day, the trunks of fallen trees, and the stools of such trees as may have been broken by the violence of storms, remain entire for but a short time. Contrary to what might be expected, the dense wood of the tree decays, and suffers from the ravages of insects, more swiftly than the bark. And the traveller, setting his foot on a prostrate trunk, finds that it is a mere sh.e.l.l, which breaks under his weight, and lands his foot amidst the insects, or the reptiles, which have sought food or refuge within.
CCIV
The coal acc.u.mulated upon the area covered by one of the great forests of the carboniferous epoch would, in course of time, have been wasted away by the small, but constant, wear and tear of rain and streams, had the land which supported it remained at the same level, or been gradually raised to a greater elevation. And, no doubt, as much coal as now exists has been destroyed, after its formation, in this way.
CCV
Once more, an invariably-recurring lesson of geological history, at whatever point its study is taken up: the lesson of the almost infinite slowness of the modification of living forms. The lines of the pedigrees of living things break off almost before they begin to converge.
CCVI
Yet another curious consideration. Let us suppose that one of the stupid, salamander-like Labyrinthodonts, which pottered, with much belly and little leg, like Falstaff in his old age, among the coal-forests, could have had thinking power enough in his small brain to reflect upon the showers of spores which kept on falling through years and centuries, while perhaps not one in ten million fulfilled its apparent purpose, and reproduced the organism which gave it birth: surely he might have been excused for moralizing upon the thoughtless and wanton extravagance which Nature displayed in her operations.
But we have the advantage over our shovel-headed predecessor--or possibly ancestor--and can perceive that a certain vein of thrift runs through this apparent prodigality. Nature is never in a hurry, and seems to have had always before her eyes the adage, "Keep a thing long enough, and you will find a use for it." She has kept her beds of coal many millions of years without being able to find much use for them; she has sent them down beneath the sea, and the sea-beasts could make nothing of them; she has raised them up into dry land, and laid the black veins bare, and still, for ages and ages, there was no living thing on the face of the earth that could see any sort of value in them; and it was only the other day, so to speak, that she turned a new creature out of her workshop, who by degrees acquired sufficient wits to make a fire, and then to discover that the black rock would burn.
I suppose that nineteen hundred years ago, when Julius Caesar was good enough to deal with Britain as we have dealt with New Zealand, the primaeval Briton, blue with cold and woad, may have known that the strange black stone, of which he found lumps here and there in his wanderings, would burn, and so help to warm his body and cook his food.
Saxon, Dane, and Norman swarmed into the land. The English people grew into a powerful nation, and Nature still waited for a full return of the capital she had invested in the ancient club-mosses. The eighteenth century arrived, and with it James Watt. The brain of that man was the spore out of which was developed the modern steam-engine, and all the prodigious trees and branches of modern industry which have grown out of this. But coal is as much an essential condition of this growth and development as carbonic acid is for that of a club-moss. Wanting coal, we could not have smelted the iron needed to make our engines, nor have worked our engines when we had got them. But take away the engines, and the great towns of Yorks.h.i.+re and Lancas.h.i.+re vanish like a dream.
Manufactures give place to agriculture and pasture, and not ten men can live where now ten thousand are amply supported.
Thus, all this abundant wealth of money and of vivid life is Nature's interest upon her investment in club-mosses, and the like, so long ago.
But what becomes of the coal which is burnt in yielding this interest?
Heat comes out of it, light comes out of it; and if we could gather together all that goes up the chimney, and all that remains in the grate of a thoroughly-burnt coal-fire, we should find ourselves in possession of a quant.i.ty of carbonic acid, water, ammonia, and mineral matters, exactly equal in weight to the coal. But these are the very matters with which Nature supplied the club-mosses which made the coal. She is paid back princ.i.p.al and interest at the same time; and she straightway invests the carbonic acid, the water, and the ammonia in new forms of life, feeding with them the plants that now live. Thrifty Nature! Surely no prodigal, but most notable of housekeepers!
CCVII
Here, then, is a capital fact. The movements of the lobster are due to muscular contractility. But why does a muscle contract at one time and not at another? Why does one whole group of muscles contract when the lobster wishes to extend his tail and another group when he desires to bend it? What is it originates, directs, and controls the motive power?
Experiment, the great instrument for the ascertainment of truth in physical science, answers this question for us. In the head of the lobster there lies a small ma.s.s of that peculiar tissue which is known as nervous substance. Cords of similar matter connect this brain of the lobster, directly or indirectly, with the muscles. Now, if these communicating cords are cut, the brain remaining entire, the power of exerting what we call voluntary motion m the parts below the section is destroyed; and, on the other hand, if, the cords remaining entire, the brain ma.s.s be destroyed, the same voluntary mobility is equally lost, whence the inevitable conclusion is, that the power of originating these motions resides in the brain and is propagated along the nervous cords.
In the higher animals the phenomena which attend this transmission have been investigated, and the exertion of the peculiar energy which resides in the nerves has been found to be accompanied by a disturbance of the electrical state of their molecules.
If we could exactly estimate the signification of this disturbance; if we could obtain the value of a given exertion of nerve force by determining the quant.i.ty of electricity, or of heat, of which it is the equivalent; if we could ascertain upon what arrangement, or other condition of the molecules of matter, the manifestation of the nervous and muscular energies depends (and doubtless science will some day or other ascertain these points), physiologists would have attained their ultimate goal in this direction; they would have determined the relation of the motive force of animals to the other forms of force found in nature; and if the same process had been successfully performed for all the operations which are carried on in, and by, the animal frame, physiology would be perfect, and the facts of morphology and distribution would be deducible from the laws which physiologists had established, combined with those determining the condition of the surrounding universe.
CCVIII
The object of lectures is, in the first place, to awaken the attention and excite the enthusiasm of the student; and this, I am sure, may be effected to a far greater extent by the oral discourse and by the personal influence of a respected teacher than in any other way.
Secondly, lectures have the double use of guiding the student to the salient points of a subject, and at the same time forcing him to attend to the whole of it, and not merely to that part which takes his fancy.
And lastly, lectures afford the student the opportunity of seeking explanations of those difficulties which will, and indeed ought to, arise in the course of his studies.
CCIX
What books shall I read? is a question constantly put by the student to the teacher. My reply usually is, "None: write your notes out carefully and fully; strive to understand them thoroughly; come to me for the explanation of anything you cannot understand; and I would rather you did not distract your mind by reading." A properly composed course of lectures ought to contain fully as much matter as a student can a.s.similate in the time occupied by its delivery; and the teacher should always recollect that his business is to feed and not to cram the intellect. Indeed, I believe that a student who gains from a course of lectures the simple habit of concentrating his attention upon a definitely limited series of facts, until they are thoroughly mastered, has made a step of immeasurable importance.
CCX
However good lectures may be, and however extensive the course of reading-by which they are followed up, they are but accessories to the great instrument of scientific teaching--demonstration. If I insist unweariedly, nay fanatically, upon the importance of physical science as an educational agent, it is because the study of any branch of science, if properly conducted, appears to me to fill up a void left by all other means of education. I have the greatest respect and love for literature; nothing would grieve me more than to see literary training other than a very prominent branch of education: indeed, I wish that real literary discipline were far more attended to than it is; but I cannot shut my eyes to the fact that there is a vast difference between men who have had a purely literary, and those who have had a sound scientific, training.
CCXI
In the world of letters, learning and knowledge are one, and books are the source of both; whereas in science, as in life, learning and knowledge are distinct, and the study of things, and not of books, is the source of the latter.
CCXII
All that literature has to bestow may be obtained by reading and by practical exercise in writing and in speaking; but I do not exaggerate when I say that none of the best gifts of science are to be won by these means. On the contrary, the great benefit which a scientific education bestows, whether as training or as knowledge, is dependent upon the extent to which the mind of the student is brought into immediate contact with facts--upon the degree to which he learns the habit of appealing directly to Nature, and of acquiring through his senses concrete images of those properties of things, which are, and always will be, but approximatively expressed in human language. Our way of looking at Nature, and of speaking about her, varies from year to year; but a fact once seen, a relation of cause and effect, once demonstratively apprehended, are possessions which neither change nor pa.s.s away, but, on the contrary, form fixed centres, about which other truths aggregate by natural affinity.
Therefore, the great business of the scientific teacher is, to imprint the fundamental, irrefragable facts of his science, not only by words upon the mind, but by sensible impressions upon tne eye, and ear, and touch of the student, in so complete a manner, that every term used, or law enunciated, should afterwards call up vivid images of the particular structural, or other, facts which furnished the demonstration of the law, or the ill.u.s.tration of the term.
CCXIII
What is the purpose of primary intellectual education? I apprehend that its first object is to train the young in the use of those tools wherewith men extract knowledge from the ever-s.h.i.+fting; succession of phenomena which pa.s.s before their eyes; and that its second object is to inform them of the fundamental laws which have been found by experience to govern the course of things, so that they may not be turned out into the world naked, defenceless, and a prey to the events they might control.
A boy is taught to read his own and other languages, in order that he may have access to infinitely wider stores of knowledge than could ever be opened to him by oral intercourse with his fellow men; he learns to write, that his means of communication with the rest of mankind may be indefinitely enlarged, and that he may record and store up the knowledge he acquires. He is taught elementary mathematics, that he may understand all those relations of number and form, upon which the transactions of men, a.s.sociated in complicated societies, are built, and that he may have some practice in deductive reasoning.
All these operations of reading, writing, and ciphering are intellectual tools, whose use should, before all things, be learned, and learned thoroughly; so that the youth may be enabled to make his life that which it ought to be, a continual progress in learning and in wisdom.