LightNovesOnl.com

Gardening Without Irrigation Part 1

Gardening Without Irrigation - LightNovelsOnl.com

You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.

Gardening Without Irrigation: or without much, anyway.

by Steve Solomon.

Introduction

Starting a New Gardening Era

First, you should know why a maritime Northwest raised-bed gardener named Steve Solomon became worried about his dependence on irrigation.

I'm from Michigan. I moved to Lorane, Oregon, in April 1978 and homesteaded on 5 acres in what I thought at the time was a cool, showery green valley of liquid suns.h.i.+ne and rainbows. I intended to put in a big garden and grow as much of my own food as possible.

Two months later, in June, just as my garden began needing water, my so-called 15-gallon-per-minute well began to falter, yielding less and less with each pa.s.sing week. By August it delivered about 3 gallons per minute. Fortunately, I wasn't faced with a completely dry well or one that had shrunk to below 1 gallon per minute, as I soon discovered many of my neighbors were cursed with. Three gallons per minute won't supply a fan nozzle or even a common impulse sprinkler, but I could still sustain my big raised-bed garden by watering all night, five or six nights a week, with a single, 2-1/2 gallon-per-minute sprinkler that I moved from place to place.

I had repeatedly read that gardening in raised beds was the most productive vegetable growing method, required the least work, and was the most water-efficient system ever known. So, without adequate irrigation, I would have concluded that food self-sufficiency on my homestead was not possible. In late September of that first year, I could still run that single sprinkler. What a relief not to have invested every last cent in land that couldn't feed us.

For many succeeding years at Lorane, I raised lots of organically grown food on densely planted raised beds, but the realities of being a country gardener continued to remind me of how tenuous my irrigation supply actually was. We country folks have to be self-reliant: I am my own sanitation department, I maintain my own 800-foot-long driveway, the septic system puts me in the sewage business. A long, long response time to my 911 call means I'm my own self-defense force. And I'm my own water department.

Without regular and heavy watering during high summer, dense stands of vegetables become stunted in a matter of days. Pump failure has brought my raised-bed garden close to that several times. Before my frantic efforts got the water flowing again, I could feel the stressed-out garden screaming like a hungry baby.

As I came to understand our climate, I began to wonder about _complete_ food self-sufficiency. How did the early pioneers irrigate their vegetables? There probably aren't more than a thousand homestead sites in the entire maritime Northwest with gravity water. Hand pumping into hand-carried buckets is impractical and extremely tedious. Wind-powered pumps are expensive and have severe limits.

The combination of dependably rainless summers, the realities of self-sufficient living, and my homestead's poor well turned out to be an opportunity. For I continued wondering about gardens and water, and discovered a method for growing a lush, productive vegetable garden on deep soil with little or no irrigation, in a climate that reliably provides 8 to 12 virtually dry weeks every summer.

Gardening with Less Irrigation

Being a garden writer, I was on the receiving end of quite a bit of local lore. I had heard of someone growing unirrigated carrots on sandy soil in southern Oregon by sowing early and s.p.a.cing the roots 1 foot apart in rows 4 feet apart. The carrots were reputed to grow to enormous sizes, and the overall yield in pounds per square foot occupied by the crop was not as low as one might think. I read that Native Americans in the Southwest grew remarkable desert gardens with little or no water. And that Native South Americans in the highlands of Peru and Bolivia grow food crops in a land with 8 to 12 inches of rainfall. So I had to wonder what our own pioneers did.

In 1987, we moved 50 miles south, to a much better homestead with more acreage and an abundant well. Ironically, only then did I grow my first summertime vegetable without irrigation. Being a low-key survivalist at heart, I was working at growing my own seeds. The main danger to attaining good germination is in repeatedly moistening developing seed. So, in early March 1988, I moved six winter-surviving savoy cabbage plants far beyond the irrigated soil of my raised-bed vegetable garden. I transplanted them 4 feet apart because blooming bra.s.sicas make huge sprays of flower stalks. I did not plan to water these plants at all, since cabbage seed forms during May and dries down during June as the soil naturally dries out.

That is just what happened. Except that one plant did something a little unusual, though not unheard of. Instead of completely going into bloom and then dying after setting a ma.s.sive load of seed, this plant also threw a vegetative bud that grew a whole new cabbage among the seed stalks.

With increasing excitement I watched this head grow steadily larger through the hottest and driest summer I had ever experienced.

Realizing I was witnessing revelation, I gave the plant absolutely no water, though I did hoe out the weeds around it after I cut the seed stalks. I harvested the unexpected lesson at the end of September. The cabbage weighed in at 6 or 7 pounds and was sweet and tender.

Up to that time, all my gardening had been on thoroughly and uniformly watered raised beds. Now I saw that elbow room might be the key to gardening with little or no irrigating, so I began looking for more information about dry gardening and soil/water physics. In spring 1989, I tilled four widely separated, unirrigated experimental rows in which I tested an a.s.sortment of vegetable species s.p.a.ced far apart in the row. Out of curiosity I decided to use absolutely no water at all, not even to sprinkle the seeds to get them germinating.

I sowed a bit of kale, savoy cabbage, Purple Sprouting broccoli, carrots, beets, parsnips, parsley, endive, dry beans, potatoes, French sorrel, and a couple of field cornstalks. I also tested one compact bush (determinate) and one sprawling (indeterminate) tomato plant. Many of these vegetables grew surprisingly well. I ate unwatered tomatoes July through September; kale, cabbages, parsley, and root crops fed us during the winter. The Purple Sprouting broccoli bloomed abundantly the next March.

In terms of quality, all the harvest was acceptable. The root vegetables were far larger but only a little bit tougher and quite a bit sweeter than usual. The potatoes yielded less than I'd been used to and had thicker than usual skin, but also had a better flavor and kept well through the winter.

The following year I grew two parallel gardens. One, my "insurance garden," was thoroughly irrigated, guaranteeing we would have plenty to eat. Another experimental garden of equal size was entirely unirrigated. There I tested larger plots of species that I hoped could grow through a rainless summer.

By July, growth on some species had slowed to a crawl and they looked a little gnarly. Wondering if a hidden cause of what appeared to be moisture stress might actually be nutrient deficiencies, I tried spraying liquid fertilizer directly on these gnarly leaves, a practice called foliar feeding. It helped greatly because, I reasoned, most fertility is located in the topsoil, and when it gets dry the plants draw on subsoil moisture, so surface nutrients, though still present in the dry soil, become un.o.btainable. That being so, I reasoned that some of these species might do even better if they had just a little fertilized water. So I improvised a simple drip system and metered out 4 or 5 gallons of liquid fertilizer to some of the plants in late July and four gallons more in August. To some species, extra fertilized water (what I call "fertigation") hardly made any difference at all. But unirrigated winter squash vines, which were small and scraggly and yielded about 15 pounds of food, grew more lushly when given a few 5-gallon, fertilizer-fortified a.s.sists and yielded 50 pounds. Thirty-five pounds of squash for 25 extra gallons of water and a bit of extra nutrition is a pretty good exchange in my book.

The next year I integrated all this new information into just one garden. Water-loving species like lettuce and celery were grown through the summer on a large, thoroughly irrigated raised bed. The rest of the garden was given no irrigation at all or minimally metered-out fertigations. Some unirrigated crops were foliar fed weekly.

Everything worked in 1991! And I found still other species that I could grow surprisingly well on surprisingly small amounts of water[--]or none at all. So, the next year, 1992, I set up a sprinkler system to water the intensive raised bed and used the overspray to support species that grew better with some moisture supplementation; I continued using my improvised drip system to help still others, while keeping a large section of the garden entirely unwatered. And at the end of that summer I wrote this book.

What follows is not mere theory, not something I read about or saw others do. These techniques are tested and workable. The next-to-last chapter of this book contains a complete plan of my 1992 garden with explanations and discussion of the reasoning behind it.

In _Water-Wise Vegetables_ I a.s.sume that my readers already are growing food (probably on raised beds), already know how to adjust their gardening to this region's climate, and know how to garden with irrigation. If you don't have this background I suggest you read my other garden book, _Growing Vegetables West of the Cascades,_ (Sasquatch Books, 1989).

Steve Solomon

Chapter 1

Predictably Rainless Summers

In the eastern United States, summertime rainfall can support gardens without irrigation but is just irregular enough to be worrisome. West of the Cascades we go into the summer growing season certain we must water regularly.

My own many-times-revised book _Growing Vegetables West of the Cascades_ correctly emphasized that moisture-stressed vegetables suffer greatly. Because I had not yet noticed how plant s.p.a.cing affects soil moisture loss, in that book I stated a half-truth as law: Soil moisture loss averages 1-1/2 inches per week during summer.

This figure is generally true for raised-bed gardens west of the Cascades, so I recommended adding 1 1/2 inches of water each week and even more during really hot weather.

Summertime Rainfall West of the Cascades (in inches)*

Location April May June July Aug. Sept. Oct.

Eureka, CA 3.0 2.1 0.7 0.1 0.3 0.7 3.2 Medford, OR 1.0 1.4 0.98 0.3 0.3 0.6 2.1 Eugene, OR 2.3 2.1 1.3 0.3 0.6 1.3 4.0 Portland, OR 2.2 2.1 1.6 0.5 0.8 1.6 3.6 Astoria, OR 4.6 2.7 2.5 1.0 1.5 2.8 6.8 Olympia, WA 3.1 1.9 1.6 0.7 1.2 2.1 5.3 Seattle, WA 2.4 1.7 1.6 0.8 1.0 2.1 4.0 Bellingham, WA 2.3 1.8 1.9 1.0 1.1 2.0 3.7 Vancouver, BC 3.3 2.8 2.5 1.2 1.7 3.6 5.8 Victoria, BC 1.2 1.0 0.9 0.4 0.6 1.5 2.8

*Source: Van der Leeden et al., _The Water Encyclopedia,_ 2nd ed., (Chelsea, Mich.: Lewis Publishers, 1990).

Defined scientifically, drought is not lack of rain. It is a dry soil condition in which plant growth slows or stops and plant survival may be threatened. The earth loses water when wind blows, when sun s.h.i.+nes, when air temperature is high, and when humidity is low. Of all these factors, air temperature most affects soil moisture loss.

Daily Maximum Temperature (F)*

July/August Average

Eureka, CA 61 Medford, OR 89 Eugene, OR 82 Astoria, OR 68 Olympia, WA 78 Seattle, WA 75 Bellingham, WA 74 Vancouver, BC 73 Victoria, BC 68

*Source: The Water Encyclopedia.

The kind of vegetation growing on a particular plot and its density have even more to do with soil moisture loss than temperature or humidity or wind speed. And, surprising as it might seem, bare soil may not lose much moisture at all. I now know it is next to impossible to antic.i.p.ate moisture loss from soil without first specifying the vegetation there. Evaporation from a large body of water, however, is mainly determined by weather, so reservoir evaporation measurements serve as a rough gauge of antic.i.p.ated soil moisture loss.

Evaporation from Reservoirs (inches per month)*

Click Like and comment to support us!

RECENTLY UPDATED NOVELS

About Gardening Without Irrigation Part 1 novel

You're reading Gardening Without Irrigation by Author(s): Steve Solomon. This novel has been translated and updated at LightNovelsOnl.com and has already 779 views. And it would be great if you choose to read and follow your favorite novel on our website. We promise you that we'll bring you the latest novels, a novel list updates everyday and free. LightNovelsOnl.com is a very smart website for reading novels online, friendly on mobile. If you have any questions, please do not hesitate to contact us at [email protected] or just simply leave your comment so we'll know how to make you happy.