The Singularity Is Near_ When Humans Transcend Biology - LightNovelsOnl.com
You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.
The Smaller the Interaction, the Larger the Explosive Potential. There has been recent controversy over the potential for future very high-energy particle accelerators to create a chain reaction of transformed energy states at a subatomic level. The result could be an exponentially spreading area of destruction, breaking apart all atoms in our galactic vicinity. A variety of such scenarios has been proposed, including the possibility of creating a black hole that would draw in our solar system. There has been recent controversy over the potential for future very high-energy particle accelerators to create a chain reaction of transformed energy states at a subatomic level. The result could be an exponentially spreading area of destruction, breaking apart all atoms in our galactic vicinity. A variety of such scenarios has been proposed, including the possibility of creating a black hole that would draw in our solar system.
a.n.a.lyses of these scenarios show them to be very unlikely, although not all physicists are sanguine about the danger.25 The mathematics of these a.n.a.lyses appears to be sound, but we do not yet have a consensus on the formulas that describe this level of physical reality. If such dangers sound far-fetched, consider the possibility that we have indeed detected increasingly powerful explosive phenomena at diminis.h.i.+ng scales of matter. The mathematics of these a.n.a.lyses appears to be sound, but we do not yet have a consensus on the formulas that describe this level of physical reality. If such dangers sound far-fetched, consider the possibility that we have indeed detected increasingly powerful explosive phenomena at diminis.h.i.+ng scales of matter.
Alfred n.o.bel discovered dynamite by probing chemical interactions of molecules. The atomic bomb, which is tens of thousands of times more powerful than dynamite, is based on nuclear interactions involving large atoms, which are much smaller scales of matter than large molecules. The hydrogen bomb, which is thousands of times more powerful than an atomic bomb, is based on interactions involving an even smaller scale: small atoms. Although this insight does not necessarily imply the existence of yet more powerful destructive chain reactions by manipulating subatomic particles, it does make the conjecture plausible.
My own a.s.sessment of this danger is that we are unlikely simply to stumble across such a destructive event. Consider how unlikely it would be to accidentally produce an atomic bomb. Such a device requires a precise configuration of materials and actions, and the original required an extensive and precise engineering project to develop. Inadvertently creating a hydrogen bomb would be even less plausible. One would have to create the precise conditions of an atomic bomb in a particular arrangement with a hydrogen core and other elements. Stumbling across the exact conditions to create a new cla.s.s of catastrophic chain reaction at a subatomic level appears to be even less likely. The consequences are sufficiently devastating, however, that the precautionary principle should lead us to take these possibilities seriously. This potential should be carefully a.n.a.lyzed prior to carrying out new cla.s.ses of accelerator experiments. However, this risk is not high on my list of twenty-first-century concerns.
Our Simulation Is Turned Off. Another existential risk that Bostrom and others have identified is that we're actually living in a simulation and the simulation will be shut down. It might appear that there's not a lot we could do to influence this. However, since we're the subject of the simulation, we do have the opportunity to shape what happens inside of it. The best way we could avoid being shut down would be to be interesting to the observers of the simulation. a.s.suming that someone is actually paying attention to the simulation, it's a fair a.s.sumption that it's less likely to be turned off when it's compelling than otherwise. Another existential risk that Bostrom and others have identified is that we're actually living in a simulation and the simulation will be shut down. It might appear that there's not a lot we could do to influence this. However, since we're the subject of the simulation, we do have the opportunity to shape what happens inside of it. The best way we could avoid being shut down would be to be interesting to the observers of the simulation. a.s.suming that someone is actually paying attention to the simulation, it's a fair a.s.sumption that it's less likely to be turned off when it's compelling than otherwise.
We could spend a lot of time considering what it means for a simulation to be interesting, but the creation of new knowledge would be a critical part of this a.s.sessment. Although it may be difficult for us to conjecture what would be interesting to our hypothesized simulation observer, it would seem that the Singularity is likely to be about as absorbing as any development we could imagine and would create new knowledge at an extraordinary rate. Indeed, achieving a Singularity of exploding knowledge may be the very purpose of the simulation. Thus, a.s.suring a "constructive" Singularity (one that avoids degenerate outcomes such as existential destruction by gray goo or dominance by a malicious AI) could be the best course to prevent the simulation from being terminated. Of course, we have every motivation to achieve a constructive Singularity for many other reasons.
If the world we're living in is a simulation on someone's computer, it's a very good one-so detailed, in fact, that we may as well accept it as our reality. In any event, it is the only reality to which we have access.
Our world appears to have a long and rich history. This means that either our world is not, in fact, a simulation or, if it is, the simulation has been going a very long time and thus is not likely to stop anytime soon. Of course it is also possible that the simulation includes evidence of a long history without the history's having actually occurred.
As I discussed in chapter 6, there are conjectures that an advanced civilization may create a new universe to perform computation (or, to put it another way, to continue the expansion of its own computation). Our living in such a universe (created by another civilization) can be considered a simulation scenario. Perhaps this other civilization is running an evolutionary algorithm on our universe (that is, the evolution we're witnessing) to create an explosion of knowledge from a technology Singularity. If that is true, then the civilization watching our universe might shut down the simulation if it appeared that a knowledge Singularity had gone awry and it did not look like it was going to occur.
This scenario is also not high on my worry list, particularly since the only strategy that we can follow to avoid a negative outcome is the one we need to follow anyway.
Cras.h.i.+ng the Party. Another oft-cited concern is that of a large-scale asteroid or comet collision, which has occurred repeatedly in the Earth's history, and did represent existential outcomes for species at these times. This is not a peril of technology, of course. Rather, technology will protect us from this risk (certainly within one to a couple of decades). Although small impacts are a regular occurrence, large and destructive visitors from s.p.a.ce are rare. We don't see one on the horizon, and it is virtually certain that by the time such a danger occurs, our civilization will readily destroy the intruder before it destroys us. Another oft-cited concern is that of a large-scale asteroid or comet collision, which has occurred repeatedly in the Earth's history, and did represent existential outcomes for species at these times. This is not a peril of technology, of course. Rather, technology will protect us from this risk (certainly within one to a couple of decades). Although small impacts are a regular occurrence, large and destructive visitors from s.p.a.ce are rare. We don't see one on the horizon, and it is virtually certain that by the time such a danger occurs, our civilization will readily destroy the intruder before it destroys us.
Another item on the existential danger list is destruction by an alien intelligence (not one that we've created). I discussed this possibility in chapter 6 and I don't see this as likely, either.
GNR: The Proper Focus of Promise Versus Peril. This leaves the GNR technologies as the primary concerns. However, I do think we also need to take seriously the misguided and increasingly strident Luddite voices that advocate reliance on broad relinquishment of technological progress to avoid the genuine dangers of GNR. For reasons I discuss below (see p. 410), relinquishment is not the answer, but rational fear could lead to irrational solutions. Delays in overcoming human suffering are still of great consequence-for example, the worsening of famine in Africa due to opposition to aid from food using GMOs (genetically modified organisms). This leaves the GNR technologies as the primary concerns. However, I do think we also need to take seriously the misguided and increasingly strident Luddite voices that advocate reliance on broad relinquishment of technological progress to avoid the genuine dangers of GNR. For reasons I discuss below (see p. 410), relinquishment is not the answer, but rational fear could lead to irrational solutions. Delays in overcoming human suffering are still of great consequence-for example, the worsening of famine in Africa due to opposition to aid from food using GMOs (genetically modified organisms).
Broad relinquishment would require a totalitarian system to implement, and a totalitarian brave new world is unlikely because of the democratizing impact of increasingly powerful decentralized electronic and photonic communication. The advent of worldwide, decentralized communication epitomized by the Internet and cell phones has been a pervasive democratizing force. It was not Boris Yeltsin standing on a tank that overturned the 1991 coup against Mikhail Gorbachev, but rather the clandestine network of fax machines, photocopiers, video recorders, and personal computers that broke decades of totalitarian control of information.26 The movement toward democracy and capitalism and the attendant economic growth that characterized the 1990s were all fueled by the accelerating force of these person-to-person communication technologies. The movement toward democracy and capitalism and the attendant economic growth that characterized the 1990s were all fueled by the accelerating force of these person-to-person communication technologies.
There are other questions that are nonexistential but nonetheless serious. They include "Who is controlling the nan.o.bots?" and "Whom are the nan.o.bots talking to?" Future organizations (whether governments or extremist groups) or just a clever individual could put trillions of undetectable nan.o.bots in the water or food supply of an individual or of an entire population. These spybots could then monitor, influence, and even control thoughts and actions. In addition existing nan.o.bots could be influenced through software viruses and hacking techniques. When there is software running in our bodies and brains (as we discussed, a threshold we have already pa.s.sed for some people), issues of privacy and security will take on a new urgency, and countersurveillance methods of combating such intrusions will be devised.
The Inevitability of a Transformed Future. The diverse GNR technologies are progressing on many fronts. The full realization of GNR will result from hundreds of small steps forward, each benign in itself. For G we have already pa.s.sed the threshold of having the means to create designer pathogens. Advances in biotechnology will continue to accelerate, fueled by the compelling ethical and economic benefits that will result from mastering the information processes underlying biology. The diverse GNR technologies are progressing on many fronts. The full realization of GNR will result from hundreds of small steps forward, each benign in itself. For G we have already pa.s.sed the threshold of having the means to create designer pathogens. Advances in biotechnology will continue to accelerate, fueled by the compelling ethical and economic benefits that will result from mastering the information processes underlying biology.
Nanotechnology is the inevitable end result of the ongoing miniaturization of technology of all kinds. The key features for a wide range of applications, including electronics, mechanics, energy, and medicine, are shrinking at the rate of a factor of about four per linear dimension per decade. Moreover, there is exponential growth in research seeking to understand nanotechnology and its applications. (See the graphs on nanotechnology research studies and patents on pp. 83 and 84.) Similarly, our efforts to reverse engineer the human brain are motivated by diverse antic.i.p.ated benefits, including understanding and reversing cognitive diseases and decline. The tools for peering into the brain are showing exponential gains in spatial and temporal resolution, and we've demonstrated the ability to translate data from brain scans and studies into working models and simulations.
Insights from the brain reverse-engineering effort, overall research in developing AI algorithms, and ongoing exponential gains in computing platforms make strong AI (AI at human levels and beyond) inevitable. Once AI achieves human levels, it will necessarily soar past it because it will combine the strengths of human intelligence with the speed, memory capacity, and knowledge sharing that nonbiological intelligence already exhibits. Unlike biological intelligence, nonbiological intelligence will also benefit from ongoing exponential gains in scale, capacity, and price-performance.
Totalitarian Relinquishment. The only conceivable way that the accelerating pace of advancement on all of these fronts could be stopped would be through a worldwide totalitarian system that relinquishes the very idea of progress. Even this specter would be likely to fail in averting the dangers of GNR because the resulting underground activity would tend to favor the more destructive applications. This is because the responsible pract.i.tioners that we rely on to quickly develop defensive technologies would not have easy access to the needed tools. Fortunately, such a totalitarian outcome is unlikely because the increasing decentralization of knowledge is inherently a democratizing force. The only conceivable way that the accelerating pace of advancement on all of these fronts could be stopped would be through a worldwide totalitarian system that relinquishes the very idea of progress. Even this specter would be likely to fail in averting the dangers of GNR because the resulting underground activity would tend to favor the more destructive applications. This is because the responsible pract.i.tioners that we rely on to quickly develop defensive technologies would not have easy access to the needed tools. Fortunately, such a totalitarian outcome is unlikely because the increasing decentralization of knowledge is inherently a democratizing force.
Preparing the Defenses
My own expectation is that the creative and constructive applications of these technologies will dominate, as I believe they do today. However, we need to vastly increase our investment in developing specific defensive technologies. As I discussed, we are at the critical stage today for biotechnology, and we will reach the stage where we need to directly implement defensive technologies for nanotechnology during the late teen years of this century.
We don't have to look past today to see the intertwined promise and peril of technological advancement. Imagine describing the dangers (atomic and hydrogen bombs for one thing) that exist today to people who lived a couple of hundred years ago. They would think it mad to take such risks. But how many people in 2005 would really want to go back to the short, brutish, disease-filled, poverty-stricken, disaster-p.r.o.ne lives that 99 percent of the human race struggled through a couple of centuries ago?27 We may romanticize the past, but up until fairly recently most of humanity lived extremely fragile lives in which one all-too-common misfortune could spell disaster. Two hundred years ago life expectancy for females in the record-holding country (Sweden) was roughly thirty-five years, very brief compared to the longest life expectancy today-almost eighty-five years, for j.a.panese women. Life expectancy for males was roughly thirty-three years, compared to the current seventy-nine years in the record-holding countries.28 It took half the day to prepare the evening meal, and hard labor characterized most human activity. There were no social safety nets. Substantial portions of our species still live in this precarious way, which is at least one reason to continue technological progress and the economic enhancement that accompanies it. Only technology, with its ability to provide orders of magnitude of improvement in capability and affordability, has the scale to confront problems such as poverty, disease, pollution, and the other overriding concerns of society today. It took half the day to prepare the evening meal, and hard labor characterized most human activity. There were no social safety nets. Substantial portions of our species still live in this precarious way, which is at least one reason to continue technological progress and the economic enhancement that accompanies it. Only technology, with its ability to provide orders of magnitude of improvement in capability and affordability, has the scale to confront problems such as poverty, disease, pollution, and the other overriding concerns of society today.
People often go through three stages in considering the impact of future technology: awe and wonderment at its potential to overcome age-old problems; then a sense of dread at a new set of grave dangers that accompany these novel technologies; followed finally by the realization that the only viable and responsible path is to set a careful course that can realize the benefits while managing the dangers.
Needless to say, we have already experienced technology's downside-for example, death and destruction from war. The crude technologies of the first industrial revolution have crowded out many of the species that existed on our planet a century ago. Our centralized technologies (such as buildings, cities, airplanes, and power plants) are demonstrably insecure.
The "NBC" (nuclear, biological, and chemical) technologies of warfare have all been used or been threatened to be used in our recent past.29 The far more powerful GNR technologies threaten us with new, profound local and existential risks. If we manage to get past the concerns about genetically altered designer pathogens, followed by self-replicating ent.i.ties created through nanotechnology, we will encounter robots whose intelligence will rival and ultimately exceed our own. Such robots may make great a.s.sistants, but who's to say that we can count on them to remain reliably friendly to mere biological humans? The far more powerful GNR technologies threaten us with new, profound local and existential risks. If we manage to get past the concerns about genetically altered designer pathogens, followed by self-replicating ent.i.ties created through nanotechnology, we will encounter robots whose intelligence will rival and ultimately exceed our own. Such robots may make great a.s.sistants, but who's to say that we can count on them to remain reliably friendly to mere biological humans?
Strong AI. Strong AI promises to continue the exponential gains of human civilization. (As I discussed earlier, I include the nonbiological intelligence derived from our human civilization as still human.) But the dangers it presents are also profound precisely because of its amplification of intelligence. Intelligence is inherently impossible to control, so the various strategies that have been devised to control nanotechnology (for example, the "broadcast architecture" described below) won't work for strong AI. There have been discussions and proposals to guide AI development toward what Eliezer Yudkowsky calls "friendly AI" Strong AI promises to continue the exponential gains of human civilization. (As I discussed earlier, I include the nonbiological intelligence derived from our human civilization as still human.) But the dangers it presents are also profound precisely because of its amplification of intelligence. Intelligence is inherently impossible to control, so the various strategies that have been devised to control nanotechnology (for example, the "broadcast architecture" described below) won't work for strong AI. There have been discussions and proposals to guide AI development toward what Eliezer Yudkowsky calls "friendly AI"30 (see the section "Protection from 'Unfriendly' Strong AI," p. 420). These are useful for discussion, but it is infeasible today to devise strategies that will absolutely ensure that future AI embodies human ethics and values. (see the section "Protection from 'Unfriendly' Strong AI," p. 420). These are useful for discussion, but it is infeasible today to devise strategies that will absolutely ensure that future AI embodies human ethics and values.
Returning to the Past? In his essay and presentations Bill Joy eloquently describes the plagues of centuries past and how new self-replicating technologies, such as mutant bioengineered pathogens and nan.o.bots run amok, may bring back long-forgotten pestilence. Joy acknowledges that technological advances, such as antibiotics and improved sanitation, have freed us from the prevalence of such plagues, and such constructive applications, therefore, need to continue. Suffering in the world continues and demands our steadfast attention. Should we tell the millions of people afflicted with cancer and other devastating conditions that we are canceling the development of all bioengineered treatments because there is a risk that these same technologies may someday be used for malevolent purposes? Having posed this rhetorical question, I realize that there is a movement to do exactly that, but most people would agree that such broad-based relinquishment is not the answer. In his essay and presentations Bill Joy eloquently describes the plagues of centuries past and how new self-replicating technologies, such as mutant bioengineered pathogens and nan.o.bots run amok, may bring back long-forgotten pestilence. Joy acknowledges that technological advances, such as antibiotics and improved sanitation, have freed us from the prevalence of such plagues, and such constructive applications, therefore, need to continue. Suffering in the world continues and demands our steadfast attention. Should we tell the millions of people afflicted with cancer and other devastating conditions that we are canceling the development of all bioengineered treatments because there is a risk that these same technologies may someday be used for malevolent purposes? Having posed this rhetorical question, I realize that there is a movement to do exactly that, but most people would agree that such broad-based relinquishment is not the answer.
The continued opportunity to alleviate human distress is one key motivation for continuing technological advancement. Also compelling are the already apparent economic gains that will continue to hasten in the decades ahead. The ongoing acceleration of many intertwined technologies produces roads paved with gold. (I use the plural here because technology is clearly not a single path.) In a compet.i.tive environment it is an economic imperative to go down these roads. Relinquis.h.i.+ng technological advancement would be economic suicide for individuals, companies, and nations.
The Idea of Relinquishment
The major advances in civilization all but wreck the civilizations in which they occur.-ALFRED NORTH WHITEHEAD
This brings us to the issue of relinquishment, which is the most controversial recommendation by relinquishment advocates such as Bill McKibben. I do feel that relinquishment at the right level is part of a responsible and constructive response to the genuine perils that we will face in the future. The issue, however, is exactly this: at what level are are we to relinquish technology? we to relinquish technology?
Ted Kaczynski, who became known to the world as the Unabomber, would have us renounce all of it.31 This is neither desirable nor feasible, and the futility of such a position is only underscored by the senselessness of Kaczynski's deplorable tactics. This is neither desirable nor feasible, and the futility of such a position is only underscored by the senselessness of Kaczynski's deplorable tactics.
Other voices, less reckless than Kaczynski's, are nonetheless likewise arguing for broad-based relinquishment of technology. McKibben takes the position that we already have sufficient technology and that further progress should end. In his latest book, Enough: Staying Human in an Engineered Age Enough: Staying Human in an Engineered Age, he metaphorically compares technology to beer: "One beer is good, two beers may be better; eight beers, you're almost certainly going to regret."32 That metaphor misses the point and ignores the extensive suffering that remains in the human world that we can alleviate through sustained scientific advance. That metaphor misses the point and ignores the extensive suffering that remains in the human world that we can alleviate through sustained scientific advance.
Although new technologies, like anything else, may be used to excess at times, their promise is not just a matter of adding a fourth cell phone or doubling the number of unwanted e-mails. Rather, it means perfecting the technologies to conquer cancer and other devastating diseases, creating ubiquitous wealth to overcome poverty, cleaning up the environment from the effects of the first industrial revolution (an objective articulated by McKibben), and overcoming many other age-old problems.
Broad Relinquishment. Another level of relinquishment would be to forgo only certain fields-nanotechnology, for example-that might be regarded as too dangerous. But such sweeping strokes of relinquishment are equally untenable. As I pointed out above, nanotechnology is simply the inevitable end result of the persistent trend toward miniaturization that pervades all of technology. It is far from a single centralized effort but is being pursued by a myriad of projects with many diverse goals. Another level of relinquishment would be to forgo only certain fields-nanotechnology, for example-that might be regarded as too dangerous. But such sweeping strokes of relinquishment are equally untenable. As I pointed out above, nanotechnology is simply the inevitable end result of the persistent trend toward miniaturization that pervades all of technology. It is far from a single centralized effort but is being pursued by a myriad of projects with many diverse goals.
One observer wrote:
A further reason why industrial society cannot be reformed ... is that modern technology is a unified system in which all parts are dependent on one another. You can't get rid of the "bad" parts of technology and retain only the "good" parts. Take modern medicine, for example. Progress in medical science depends on progress in chemistry, physics, biology, computer science and other fields. Advanced medical treatments require expensive, high-tech equipment that can be made available only by a technologically progressive, economically rich society. Clearly you can't have much progress in medicine without the whole technological system and everything that goes with it.
The observer I am quoting here is, again, Ted Kaczynski.33 Although one will properly resist Kaczynski as an authority, I believe he is correct on the deeply entangled nature of the benefits and risks. However, Kaczynski and I clearly part company on our overall a.s.sessment of the relative balance between the two. Bill Joy and I have had an ongoing dialogue on this issue both publicly and privately, and we both believe that technology will and should progress and that we need to be actively concerned with its dark side. The most challenging issue to resolve is the granularity of relinquishment that is both feasible and desirable. Although one will properly resist Kaczynski as an authority, I believe he is correct on the deeply entangled nature of the benefits and risks. However, Kaczynski and I clearly part company on our overall a.s.sessment of the relative balance between the two. Bill Joy and I have had an ongoing dialogue on this issue both publicly and privately, and we both believe that technology will and should progress and that we need to be actively concerned with its dark side. The most challenging issue to resolve is the granularity of relinquishment that is both feasible and desirable.
Fine-Grained Relinquishment. I do think that relinquishment at the right level needs to be part of our ethical response to the dangers of twenty-first-century technologies. One constructive example of this is the ethical guideline proposed by the Foresight Inst.i.tute: namely, that nanotechnologists agree to relinquish the development of physical ent.i.ties that can self-replicate in a natural environment. I do think that relinquishment at the right level needs to be part of our ethical response to the dangers of twenty-first-century technologies. One constructive example of this is the ethical guideline proposed by the Foresight Inst.i.tute: namely, that nanotechnologists agree to relinquish the development of physical ent.i.ties that can self-replicate in a natural environment.34 In my view, there are two exceptions to this guideline. First, we will ultimately need to provide a nanotechnology-based planetary immune system (nan.o.bots embedded in the natural environment to protect against rogue self-replicating nan.o.bots). Robert Freitas and I have discussed whether or not such an immune system would itself need to be self-replicating. Freitas writes: "A comprehensive surveillance system coupled with prepositioned resources-resources including high-capacity nonreplicating nanofactories able to churn out large numbers of nonreplicating defenders in response to specific threats-should suffice." In my view, there are two exceptions to this guideline. First, we will ultimately need to provide a nanotechnology-based planetary immune system (nan.o.bots embedded in the natural environment to protect against rogue self-replicating nan.o.bots). Robert Freitas and I have discussed whether or not such an immune system would itself need to be self-replicating. Freitas writes: "A comprehensive surveillance system coupled with prepositioned resources-resources including high-capacity nonreplicating nanofactories able to churn out large numbers of nonreplicating defenders in response to specific threats-should suffice."35 I agree with Freitas that a prepositioned immune system with the ability to augment the defenders will be sufficient in early stages. But once strong AI is merged with nanotechnology, and the ecology of nanoengineered ent.i.ties becomes highly varied and complex, my own expectation is that we will find that the defending nanorobots need the ability to replicate in place quickly. The other exception is the need for self-replicating nan.o.bot-based probes to explore planetary systems outside of our solar system. I agree with Freitas that a prepositioned immune system with the ability to augment the defenders will be sufficient in early stages. But once strong AI is merged with nanotechnology, and the ecology of nanoengineered ent.i.ties becomes highly varied and complex, my own expectation is that we will find that the defending nanorobots need the ability to replicate in place quickly. The other exception is the need for self-replicating nan.o.bot-based probes to explore planetary systems outside of our solar system.
Another good example of a useful ethical guideline is a ban on self-replicating physical ent.i.ties that contain their own codes for self-replication. In what nanotechnologist Ralph Merkle calls the "broadcast architecture," such ent.i.ties would have to obtain such codes from a centralized secure server, which would guard against undesirable replication.36 The broadcast architecture is impossible in the biological world, so there's at least one way in which nanotechnology can be made safer than biotechnology. In other ways, nanotech is potentially more dangerous because nan.o.bots can be physically stronger than protein-based ent.i.ties and more intelligent. The broadcast architecture is impossible in the biological world, so there's at least one way in which nanotechnology can be made safer than biotechnology. In other ways, nanotech is potentially more dangerous because nan.o.bots can be physically stronger than protein-based ent.i.ties and more intelligent.
As I described in chapter 5, we can apply a nanotechnology-based broadcast architecture to biology. A nanocomputer would augment or replace the nucleus in every cell and provide the DNA codes. A nan.o.bot that incorporated molecular machinery similar to ribosomes (the molecules that interpret the base pairs in the mRNA outside the nucleus) would take the codes and produce the strings of amino acids. Since we could control the nanocomputer through wireless messages, we would be able to shut off unwanted replication, thereby eliminating cancer. We could produce special proteins as needed to combat disease. And we could correct the DNA errors and upgrade the DNA code. I comment further on the strengths and weaknesses of the broadcast architecture below.
Dealing with Abuse. Broad relinquishment is contrary to economic progress and ethically unjustified given the opportunity to alleviate disease, overcome poverty, and clean up the environment. As mentioned above, it would exacerbate the dangers. Regulations on safety-essentially fine-grained relinquishment-will remain appropriate. Broad relinquishment is contrary to economic progress and ethically unjustified given the opportunity to alleviate disease, overcome poverty, and clean up the environment. As mentioned above, it would exacerbate the dangers. Regulations on safety-essentially fine-grained relinquishment-will remain appropriate.
However, we also need to streamline the regulatory process. Right now in the United States, we have a five- to ten-year delay on new health technologies for FDA approval (with comparable delays in other nations). The harm caused by holding up potential lifesaving treatments (for example, one million lives lost in the United States for each year we delay treatments for heart disease) is given very little weight against the possible risks of new therapies.
Other protections will need to include oversight by regulatory bodies, the development of technology-specific "immune" responses, and computer-a.s.sisted surveillance by law-enforcement organizations. Many people are not aware that our intelligence agencies already use advanced technologies such as automated keyword spotting to monitor a substantial flow of telephone, cable, satellite, and Internet conversations. As we go forward, balancing our cherished rights of privacy with our need to be protected from the malicious use of powerful twenty-first-century technologies will be one of many profound challenges. This is one reason such issues as an encryption "trapdoor" (in which law-enforcement authorities would have access to otherwise secure information) and the FBI's Carnivore e-mail-snooping system have been controversial.37 As a test case we can take a small measure of comfort from how we have dealt with one recent technological challenge. There exists today a new fully nonbiological self-replicating ent.i.ty that didn't exist just a few decades ago: the computer virus. When this form of destructive intruder first appeared, strong concerns were voiced that as they became more sophisticated, software pathogens had the potential to destroy the computer-network medium in which they live. Yet the "immune system" that has evolved in response to this challenge has been largely effective. Although destructive self-replicating software ent.i.ties do cause damage from time to time, the injury is but a small fraction of the benefit we receive from the computers and communication links that harbor them.
One might counter that computer viruses do not have the lethal potential of biological viruses or of destructive nanotechnology. This is not always the case; we rely on software to operate our 911 call centers, monitor patients in critical-care units, fly and land airplanes, guide intelligent weapons in our military campaigns, handle our financial transactions, operate our munic.i.p.al utilities, and many other mission-critical tasks. To the extent that software viruses do not yet pose a lethal danger, however, this observation only strengthens my argument. The fact that computer viruses are not usually deadly to humans only means that more people are willing to create and release them. The vast majority of software-virus authors would not release viruses if they thought they would kill people. It also means that our response to the danger is that much less intense. Conversely, when it comes to self-replicating ent.i.ties that ate potentially lethal on a large scale, our response on all levels will be vastly more serious.
Although software pathogens remain a concern, the danger exists today mostly at a nuisance level. Keep in mind that our success in combating them has taken place in an industry in which there is no regulation and minimal certification for pract.i.tioners. The largely unregulated computer industry is also enormously productive. One could argue that it has contributed more to our technological and economic progress than any other enterprise in human history.
But the battle concerning software viruses and the panoply of software pathogens will never end. We are becoming increasingly reliant on mission-critical software systems, and the sophistication and potential destructiveness of self-replicating software weapons will continue to escalate. When we have software running in our brains and bodies and controlling the world's nan.o.bot immune system, the stakes will be immeasurably greater.
The Threat from Fundamentalism. The world is struggling with an especially pernicious form of religious fundamentalism in the form of radical Islamic terrorism. Although it may appear that these terrorists have no program other than destruction, they do have an agenda that goes beyond literal interpretations of ancient scriptures: essentially, to turn the clock back on such modern ideas as democracy, women's rights, and education. The world is struggling with an especially pernicious form of religious fundamentalism in the form of radical Islamic terrorism. Although it may appear that these terrorists have no program other than destruction, they do have an agenda that goes beyond literal interpretations of ancient scriptures: essentially, to turn the clock back on such modern ideas as democracy, women's rights, and education.
But religious extremism is not the only form of fundamentalism that represents a reactionary force. At the beginning of this chapter I quoted Patrick Moore, cofounder of Greenpeace, on his disillusionment with the movement he helped found. The issue that undermined Moore's support of Greenpeace was its total opposition to Golden Rice, a strain of rice genetically modified to contain high levels of beta-carotene, the precursor to vitamin A.38 Hundreds of millions of people in Africa and Asia lack sufficient vitamin A, with half a million children going blind each year from the deficiency, and millions more contracting other related diseases. About seven ounces a day of Golden Rice would provide 100 percent of a child's vitamin A requirement. Extensive studies have shown that this grain, as well as many other genetically modified organisms (GMOs), is safe. For example, in 2001 the European Commission released eighty-one studies that concluded that GMOs have "not shown any new risks to human health or the environment, beyond the usual uncertainties of conventional plant breeding. Indeed, the use of more precise technology and the greater regulatory scrutiny probably make them even safer than conventional plants and foods." Hundreds of millions of people in Africa and Asia lack sufficient vitamin A, with half a million children going blind each year from the deficiency, and millions more contracting other related diseases. About seven ounces a day of Golden Rice would provide 100 percent of a child's vitamin A requirement. Extensive studies have shown that this grain, as well as many other genetically modified organisms (GMOs), is safe. For example, in 2001 the European Commission released eighty-one studies that concluded that GMOs have "not shown any new risks to human health or the environment, beyond the usual uncertainties of conventional plant breeding. Indeed, the use of more precise technology and the greater regulatory scrutiny probably make them even safer than conventional plants and foods."39 It is not my position that all GMOs are inherently safe; obviously safety testing of each product is needed. But the anti-GMO movement takes the position that every GMO is by its very nature hazardous, a view that has no scientific basis.
The availability of Golden Rice has been delayed by at least five years through the pressure of Greenpeace and other anti-GMO activists. Moore, noting that this delay will cause millions of additional children to go blind, quotes the grain's opponents as threatening "to rip the G.M. rice out of the fields if farmers dare to plant it." Similarly, African nations have been pressured to refuse GMO food aid and genetically modified seeds, thereby worsening conditions of famine.40 Ultimately the demonstrated ability of technologies such as GMO to solve overwhelming problems will prevail, but the temporary delays caused by irrational opposition will nonetheless result in unnecessary suffering. Ultimately the demonstrated ability of technologies such as GMO to solve overwhelming problems will prevail, but the temporary delays caused by irrational opposition will nonetheless result in unnecessary suffering.
Certain segments of the environmental movement have become fundamentalist Luddites-"fundamentalist" because of their misguided attempt to preserve things as they are (or were); "Luddite" because of the reflexive stance against technological solutions to outstanding problems. Ironically it is GMO plants-many of which are designed to resist insects and other forms of blight and thereby require greatly reduced levels of chemicals, if any-that offer the best hope for reversing environmental a.s.sault from chemicals such as pesticides.
Actually my characterization of these groups as "fundamentalist Luddites" is redundant, because Ludditism is inherently fundamentalist. It reflects the idea that humanity will be better off without change, without progress. This brings us back to the idea of relinquishment, as the enthusiasm for relinquis.h.i.+ng technology on a broad scale is coming from the same intellectual sources and activist groups that make up the Luddite segment of the environmental movement.
Fundamentalist Humanism. With G and N technologies now beginning to modify our bodies and brains, another form of opposition to progress has emerged in the form of "fundamentalist humanism": opposition to any change in the nature of what it means to be human (for example, changing our genes and taking other steps toward radical life extension). This effort, too, will ultimately fail, however, because the demand for therapies that can overcome the suffering, disease, and short lifespans inherent in our version 1.0 bodies will ultimately prove irresistible. With G and N technologies now beginning to modify our bodies and brains, another form of opposition to progress has emerged in the form of "fundamentalist humanism": opposition to any change in the nature of what it means to be human (for example, changing our genes and taking other steps toward radical life extension). This effort, too, will ultimately fail, however, because the demand for therapies that can overcome the suffering, disease, and short lifespans inherent in our version 1.0 bodies will ultimately prove irresistible.
In the end, it is only technology-especially GNR-that will offer the leverage needed to overcome problems that human civilization has struggled with for many generations.
Development of Defensive Technologies and the Impact of Regulation
One of the reasons that calls for broad relinquishment have appeal is that they paint a picture of future dangers a.s.suming they will be released in the context of today's unprepared world. The reality is that the sophistication and power of our defensive knowledge and technologies will grow along with the dangers. A phenomenon like gray goo (unrestrained nan.o.bot replication) will be countered with "blue goo" ("police" nan.o.bots that combat the "bad" nan.o.bots). Obviously we cannot say with a.s.surance that we will successfully avert all misuse. But the surest way to prevent development of effective defensive technologies would be to relinquish the pursuit of knowledge in a number of broad areas. We have been able to largely control harmful software-virus replication because the requisite knowledge is widely available to responsible pract.i.tioners. Attempts to restrict such knowledge would have given rise to a far less stable situation. Responses to new challenges would have been far slower, and it is likely that the balance would have s.h.i.+fted toward more destructive applications (such as self-modifying software viruses).
If we compare the success we have had in controlling engineered software viruses to the coming challenge of controlling engineered biological viruses, we are struck with one salient difference. As I noted above, the software industry is almost completely unregulated. The same is obviously not true for biotechnology. While a bioterrorist does not need to put his "inventions" through the FDA, we do require the scientists developing defensive technologies to follow existing regulations, which slow down the innovation process at every step. Moreover, under existing regulations and ethical standards, it is impossible to test defenses against bioterrorist agents. Extensive discussion is already under way to modify these regulations to allow for animal models and simulations to replace unfeasible human trials. This will be necessary, but I believe we will need to go beyond these steps to accelerate the development of vitally needed defensive technologies.
In terms of public policy the task at hand is to rapidly develop the defensive steps needed, which include ethical standards, legal standards, and defensive technologies themselves. It is quite clearly a race. As I noted, in the software field defensive technologies have responded quickly to innovations in the offensive ones. In the medical field, in contrast, extensive regulation slows down innovation, so we cannot have the same confidence with regard to the abuse of biotechnology. In the current environment, when one person dies in gene-therapy trials, research can be severely restricted.41 There is a legitimate need to make biomedical research as safe as possible, but our balancing of risks is completely skewed. Millions of people desperately need the advances promised by gene therapy and other breakthrough biotechnology advances, but they appear to carry little political weight against a handful of well-publicized casualties from the inevitable risks of progress. There is a legitimate need to make biomedical research as safe as possible, but our balancing of risks is completely skewed. Millions of people desperately need the advances promised by gene therapy and other breakthrough biotechnology advances, but they appear to carry little political weight against a handful of well-publicized casualties from the inevitable risks of progress.
This risk-balancing equation will become even more stark when we consider the emerging dangers of bioengineered pathogens. What is needed is a change in public att.i.tude in tolerance for necessary risk. Hastening defensive technologies is absolutely vital to our security. We need to streamline regulatory procedures to achieve this. At the same time we must greatly increase our investment explicitly in defensive technologies. In the biotechnology field this means the rapid development of antiviral medications. We will not have time to formulate specific countermeasures for each new challenge that comes along. We are close to developing more generalized antiviral technologies, such as RNA interference, and these need to be accelerated.
We're addressing biotechnology here because that is the immediate threshold and challenge that we now face. As the threshold for self-organizing nanotechnology approaches, we will then need to invest specifically in the development of defensive technologies in that area, including the creation of a technological immune system. Consider how our biological immune system works. When the body detects a pathogen the T cells and other immune-system cells self-replicate rapidly to combat the invader. A nanotechnology immune system would work similarly both in the human body and in the environment and would include nan.o.bot sentinels that could detect rogue self-replicating nan.o.bots. When a threat was detected, defensive nan.o.bots capable of destroying the intruders would rapidly be created (eventually with self-replication) to provide an effective defensive force.
Bill Joy and other observers have pointed out that such an immune system would itself be a danger because of the potential of "autoimmune" reactions (that is, the immune-system nan.o.bots attacking the world they are supposed to defend).42 However this possibility is not a compelling reason to avoid the creation of an immune system. No one would argue that humans would be better off without an immune system because of the potential of developing autoimmune diseases. Although the immune system can itself present a danger, humans would not last more than a few weeks (barring extraordinary efforts at isolation) without one. And even so, the development of a technological immune system for nanotechnology will happen even without explicit efforts to create one. This has effectively happened with regard to software viruses, creating an immune system not through a formal grand-design project but rather through incremental responses to each new challenge and by developing heuristic algorithms for early detection. We can expect the same thing will happen as challenges from nanotechnology-based dangers emerge. The point for public policy will be to invest specifically in these defensive technologies. However this possibility is not a compelling reason to avoid the creation of an immune system. No one would argue that humans would be better off without an immune system because of the potential of developing autoimmune diseases. Although the immune system can itself present a danger, humans would not last more than a few weeks (barring extraordinary efforts at isolation) without one. And even so, the development of a technological immune system for nanotechnology will happen even without explicit efforts to create one. This has effectively happened with regard to software viruses, creating an immune system not through a formal grand-design project but rather through incremental responses to each new challenge and by developing heuristic algorithms for early detection. We can expect the same thing will happen as challenges from nanotechnology-based dangers emerge. The point for public policy will be to invest specifically in these defensive technologies.
It is premature today to develop specific defensive nanotechnologies, since we can now have only a general idea of what we are trying to defend against. However, fruitful dialogue and discussion on antic.i.p.ating this issue are already taking place, and significantly expanded investment in these efforts is to be encouraged. As I mentioned above, the Foresight Inst.i.tute, as one example, has devised a set of ethical standards and strategies for a.s.suring the development of safe nanotechnology, based on guidelines for biotechnology.43 When gene-splicing began in 1975 two biologists, Maxine Singer and Paul Berg, suggested a moratorium on the technology until safety concerns could be addressed. It seemed apparent that there was substantial risk if genes for poisons were introduced into pathogens, such as the common cold, that spread easily. After a ten-month moratorium guidelines were agreed to at the Asilomar conference, which included provisions for physical and biological containment, bans on particular types of experiments, and other stipulations. These biotechnology guidelines have been strictly followed, and there have not been reported accidents in the thirty-year history of the field. When gene-splicing began in 1975 two biologists, Maxine Singer and Paul Berg, suggested a moratorium on the technology until safety concerns could be addressed. It seemed apparent that there was substantial risk if genes for poisons were introduced into pathogens, such as the common cold, that spread easily. After a ten-month moratorium guidelines were agreed to at the Asilomar conference, which included provisions for physical and biological containment, bans on particular types of experiments, and other stipulations. These biotechnology guidelines have been strictly followed, and there have not been reported accidents in the thirty-year history of the field.