The Antiquity of Man - LightNovelsOnl.com
You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.
If we suppose the mammalia to be more sensitive than are the inferior cla.s.ses of the vertebrata, to every fluctuation in the surrounding conditions, whether of the animate or inanimate world, it would follow that they would oftener be called upon to adapt themselves by variation to new conditions, or if unable to do so, to give place to other types.
This would give rise to more frequent extinction of varieties, species, and genera, whereby the surviving types would be better limited, and the average duration of the same unaltered specific types would be lessened.
ABSENCE OF MAMMALIA IN ISLANDS CONSIDERED IN REFERENCE TO TRANs.m.u.tATION.
But if mammalia vary upon the whole at a more rapid rate than animals lower in the scale of being, it must not be supposed that they can alter their habits and structures readily, or that they are convertible in short periods into new species. The extreme slowness with which such changes of habits and organisation take place, when new conditions arise, appears to be well exemplified by the absence even of small warm-blooded quadrupeds in islands far from continents, however well such islands may be fitted by their dimensions to support them.
Mr. Darwin has pointed to this absence of mammalia as favouring his views, observing that bats, which are the only exceptions to the rule, might have made their way to distant islands by flight, for they are often met with on the wing far out at sea. Unquestionably, the total exclusion of quadrupeds in general, which could only reach such isolated habitations by swimming, seems to imply that nature does not dispense with the ordinary laws of reproduction when she peoples the earth with new forms; for if causes purely immaterial were alone at work, we might naturally look for squirrels, rabbits, polecats, and other small vegetable feeders and beasts of prey, as often as for bats, in the spots alluded to.
On the other hand, I have found it difficult to reconcile the antiquity of certain islands, such as those of the Madeiran Archipelago, and those of still larger size in the Canaries, with the total absence of small indigenous quadrupeds, for, judging by ancient deposits of littoral sh.e.l.ls, now raised high above the level of the sea, several of these volcanic islands (Porto Santo and the Grand Canary among others) must have existed ever since the Upper Miocene period. But, waiving all such claims to antiquity, it is at least certain that since the close of the Newer Pliocene period, Madeira, and Porto Santo have const.i.tuted two separate islands, each in sight of the other, and each inhabited by an a.s.semblage of land sh.e.l.ls (Helix, Pupa, Clausilia, etc.), for the most part different or proper to each island. About thirty-two fossil species have been obtained in Madeira, and forty-two in Porto Santo, only five of the whole being common to both islands. In each the living land-sh.e.l.ls are equally distinct, and correspond, for the most part, with the species found fossil in each island respectively.
Among the fossil species, one or two appear to be entirely extinct, and a larger number have disappeared from the fauna of the Madeiran Archipelago, though still extant in Africa and Europe. Many which were amongst the most common in the Pliocene period, have now become the scarcest, and others formerly scarce, are now most numerously represented. The variety-making force has been at work with such energy--perhaps we ought to say, has had so much time for its development--that almost every isolated rock within gun-shot of the sh.o.r.es has its peculiar living forms, or those very marked races to which Mr. Lowe, in his excellent description of the fauna, has given the name of "sub-species."
Since the fossil sh.e.l.ls were embedded in sand near the coast, these volcanic islands have undergone considerable alterations in size and shape by the wasting action of the waves of the Atlantic beating incessantly against the cliffs, so that the evidence of a vast lapse of time is derivable from inorganic as well as from organic phenomena.
During this period no mammalia, not even of small species, excepting bats, have made their appearance, whether in Madeira and Porto-Santo or in the larger and more numerous islands of the Canarian group. It might have been expected, from some expressions met with here and there in the "Origin of Species," though not perhaps from a fair interpretation of the whole tenor of the author's reasoning, that this dearth of the highest cla.s.s of vertebrata is inconsistent with the powers of mammalia to accommodate their habits and structures to new conditions. Why did not some of the bats, for example, after they had greatly multiplied, and were hard pressed by a scarcity of insects on the wing, betake themselves to the ground in search of prey, and, gradually losing their wings, become transformed into non-volant Insectivora? Mr. Darwin tells me that he has learnt that there is a bat in India which has been known occasionally to devour frogs. One might also be tempted to ask, how it has happened that the seals which swarmed on the sh.o.r.es of Madeira and the Canaries, before the European colonists arrived there, were never induced, when food was scarce in the sea, to venture inland from the sh.o.r.es, and begin in Teneriffe, and the Grand Canary especially, and other large islands, to acquire terrestrial habits, venturing first a few yards inland, and then farther and farther until they began to occupy some of the "places left vacant in the economy of nature." During these excursions, we might suppose some varieties, which had the skin of the webbed intervals of their toes less developed, to succeed best in walking on the land, and in the course of several generations they might exchange their present gait or manner of shuffling along and jumping by aid of the tail and their fin-like extremities, for feet better adapted for running.
It is said that one of the bats in the island of Palma (one of the Canaries) is of a peculiar species, and that some of the Cheiroptera of the Pacific islands are even of peculiar genera. If so, we seem, on organic as well as on geological grounds, to be precluded from arguing that there has not been time for great divergence of character. We seem also ent.i.tled to ask why the bats and rodents of Australia, which are spread so widely among the marsupials over that continent, have never, under the influence of the principle of progression, been developed into higher placental types, since we have now ascertained that that continent was by no means unfitted to sustain such mammalia, for these when once introduced by Man have run wild and become naturalised in many parts. The following answers may perhaps be offered to the above criticisms of some of Mr. Darwin's theoretical views.
First, as to the bats and seals: they are what zoologists call aberrant and highly specialised types, and therefore precisely those which might be expected to display a fixity and want of pliancy in their organisation, or the smallest possible apt.i.tude for deviating in new directions towards new structures, and the acquisition of such altered habits as a change from aquatic to terrestrial or from Volant to non-volant modes of living would imply.
Secondly, the same powers of flight which enabled the first bats to reach Madeira or the Canaries, would bring others from time to time from the African continent, which, mixing with the first emigrants and crossing with them, would check the formation of new races, or keep them true to the old types, as is found to be actually the case with the birds of Madeira and the Bermudas.
This would happen the more surely, if, as Mr. Darwin has endeavoured to prove, the offspring of races slightly varying are usually more vigorous than the progeny of parents of the same race, and would be more prolific, therefore, than the insular stock which had been for a long time breeding in and in.
The same cause would tend in a still more decided manner to prevent the seals from diverging into new races or "incipient species," because they range freely over the wide ocean, and, may therefore have continual intercourse with all other individuals of their species.
Thirdly, as to peculiar species, and even genera of bats in islands, we are perhaps too little acquainted at present with all the species and genera of the neighbouring continents to be able to affirm, with any degree of confidence, that the forms supposed to be peculiar do not exist elsewhere: those of the Canaries in Africa, for example. But what is still more important, we must bear in mind how many species and genera of Pleistocene mammalia have everywhere become extinct by causes independent of Man. It is always possible, therefore, that some types of Cheiroptera, originally derived from the main land, have survived in islands, although they have gradually died out on the continents from whence they came; so that it would be rash to infer that there has been time for the creation, whether by variation or other agency, of new species or genera in the islands in question.
As to the Rodents and Cheiroptera of Australia, we are as yet too ignorant of the Pleistocene and Pliocene fauna of that part of the world, to be able to decide whether the introduction of such forms dates from a remote geological time. We know, however, that, before the Recent period, that continent was peopled with large kangaroos, and other herbivorous and carnivorous marsupials, of species long since extinct, their remains having been discovered in ossiferous caverns. The preoccupancy of the country by such indigenous tribes may have checked the development of the placental Rodents and Cheiroptera, even were we to concede the possibility of such forms being convertible by variation and progressive development into higher grades of mammalia.
IMPERFECTION OF THE GEOLOGICAL RECORD [42].
When treating in the eighth chapter of the dearth of human bones in alluvium containing flint implements in abundance, I pointed out that it is not part of the plan of Nature to write everywhere, and at all times, her autobiographical memoirs. On the contrary, her annals are local and exceptional from the first, and portions of them are afterwards ground into mud, sand, and pebbles, to furnish materials for new strata. Even of those ancient monuments now forming the crust of the earth, which have not been destroyed by rivers and the waves of the sea, or which have escaped being melted by volcanic heat, three-fourths lie submerged beneath the ocean, and are inaccessible to Man; while of those which form the dry land, a great part are hidden for ever from our observation by mountain ma.s.ses, thousands of feet thick, piled over them.
Mr. Darwin has truly said that the fossiliferous rocks known to geologists consist, for the most part, of such as were formed when the bottom of the sea was subsiding. This downward movement protects the new deposits from denudation, and allows them to acc.u.mulate to a great thickness; whereas sedimentary matter, thrown down where the sea-bottom is rising, must almost invariably be swept away by the waves as fast as the land emerges.
When we reflect, therefore, on the fractional state of the annals which are handed down to us, and how little even these have as yet been studied, we may wonder that so many geologists should attribute every break in the series of strata and every gap in the past history of the organic world to catastrophes and convulsions of the earth's crust or to leaps made by the creational force from species to species, or from cla.s.s to cla.s.s. For it is clear that, even had the series of monuments been perfect and continuous at first (an hypothesis quite opposed to the a.n.a.logy of the working of causes now in action), it could not fail to present itself to our eyes in a broken and disconnected state.
Those geologists who have watched the progress of discovery during the last half century can best appreciate the extent to which we may still hope by future exertion to fill up some of the wider chasms which now interrupt the regular sequence of fossiliferous rocks. The determination, for example, of late years of the true place of the Hallstadt and St. Ca.s.sian beds on the north and south flanks of the Austrian Alps, has revealed to us, for the first time, the marine fauna of a period (that of the Upper Trias) of which, until lately, but little was known. In this case, the palaeontologist is called upon suddenly to intercalate about 800 species of Mollusca and Radiata, between the fauna of the Lower Lias and that of the Middle Trias. The period in question was previously believed, even by many a philosophical geologist, to have been comparatively barren of organic types. In England, France, and northern Germany, the only known strata of Upper Tria.s.sic date had consisted almost entirely of fresh or brackish-water beds, in which the bones of terrestrial and amphibious reptiles were the most characteristic fossils. The new fauna was, as might have been expected, in part peculiar, not a few of the species of Mollusca being referable to new genera; while some species were common to the older, and some to the newer rocks. On the whole, the new forms have helped greatly to lessen the discordance, not only between the Lias and Trias, but also generally between Palaeozoic and Mesozoic formations. Thus the genus Orthoceras has been for the first time recognised in a Mesozoic deposit, and with it we find a.s.sociated, for the first time, large Ammonites with foliated lobes, a form never seen before below the Lias; also the Cerat.i.tes, a family of Cephalopods never before met with in the Upper Trias, and never before in the same stratum with such lobed Ammonites.
We can now no longer doubt that should we hereafter have an opportunity of studying an equally rich marine fauna of the age of the Lower Trias (or Bunter Sandstein), the marked hiatus which still separates the Tria.s.sic and Permian eras would almost disappear.
Archaeopteryx macrurus, Owen.
I could readily add a copious list of minor deposits, belonging to the Primary, Secondary and Tertiary series, which we have been called upon in like manner to intercalate in the course of the last quarter of a century into the chronological series previously known; but it would lead me into too long a digression. I shall therefore content myself with pointing out that it is not simply new formations which are brought to light from year to year, reminding us of the elementary state of our knowledge of palaeontology, but new types also of structure are discovered in rocks whose fossil contents were supposed to be peculiarly well known.
The last and most striking of these novelties is "the feathered fossil"
from the lithographic stone of Solenhofen.
Until the year 1858, no well-determined skeleton of a bird had been detected in any rocks older than the Tertiary. In that year, Mr. Lucas Barrett found in the Cambridge Greensand of the Cretaceous series, the femur, tibia, and some other bones of a swimming bird, supposed by him to be of the gull tribe. His opinion as to the ornithic character of the remains was afterwards confirmed by Professor Owen.
The Archaeopteryx macrurus, Owen, recently acquired by the British Museum, affords a second example of the discovery of the osseous remains of a bird in strata older than the Eocene. It was found in the great quarries of lithographic limestone at Solenhofen in Bavaria, the rock being a member of the Upper Oolite.
It was at first conjectured in Germany, before any experienced osteologist had had an opportunity of inspecting the original specimen, that this fossil might be a feathered Pterodactyl (flying reptiles having been often met with in the same stratum), or that it might at least supply some connecting links between a reptile and a bird. But Professor Owen, in a memoir lately read to the Royal Society (November 20, 1862), has shown that it is unequivocally a bird, and that such of its characters as are abnormal are by no means strikingly reptilian. The skeleton was lying on its back when embedded in calcareous sediment, so that the ventral part is exposed to view. It is about 1 foot 8 inches long, and 1 foot across, from the apex of the right to that of the left wing. The furculum, or merry-thought, which is entire, marks the fore part of the trunk; the ischium, scapula, and most of the wing and leg bones are preserved, and there are impressions of the quill feathers and of down on the body. The vanes and shafts of the feathers can be seen by the naked eye. Fourteen long quill feathers diverge on each side of the metacarpal and phalangial bones, and decrease in length from 6 inches to 1 inch. The wings have a general resemblance to those of gallinaceous birds. The tarso-metatarsal, or drumstick, exhibits at its distal end a trifid articular surface supporting three toes, as in birds. The furculum, pelvis, and bones of the tail are in their natural position.
The tail consists of twenty vertebrae, each of which supports a pair of plumes. The length of the tail with its feathers is 11 1/2 inches, and its breadth 3 1/2. It is obtusely truncated at the end. In all living birds the tail-feathers are arranged in fan-shaped order and attached to a coccygean bone, consisting of several vertebrae united together, whereas in the embryo state these same vertebrae are distinct. The greatest number is seen in the ostrich, which has eighteen caudal vertebrae in the foetal state, which are reduced to nine in the adult bird, many of them having been anchylosed together. Professor Owen therefore considers the tail of the Archaeopteryx as exemplifying the persistency of what is now an embryonic character. The tail, he remarks, is essentially a variable organ; there are long-tailed bats and short-tailed bats, long-tailed rodents and short-tailed rodents, long-tailed pterodactyls and short-tailed pterodactyls.
The Archaeopteryx differs from all known birds, not only in the structure of its tail, but in having two, if not three, digits in the hand; but there is no trace of the fifth digit of the winged reptile.
The conditions under which the skeleton occurs are such, says Professor Owen, as to remind us of the carca.s.s of a gull which has been a prey to some Carnivore, which had removed all the soft parts, and perhaps the head, nothing being left but the bony legs and the indigestible quill-feathers. But since Professor Owen's paper was read, Mr. John Evans, whom I have often had occasion to mention in the earlier chapters of this work, seems to have found what may indicate a part of the missing cranium. He has called our attention to a smooth protuberance on the otherwise even surface of the slab of limestone which seems to be the cast of the brain or interior of the skull. Some part even of the cranial bone itself appears to be still buried in the matrix. Mr. Evans has pointed out the resemblance of this cast to one taken by himself from the cranium of a crow, and still more to that of a jay, observing that in the fossil the median line which separates the two hemispheres of the brain is visible.
To conclude, we may learn from this valuable relic how rashly the existence of Birds at the epoch of the Secondary rocks has been questioned, simply on negative evidence, and secondly, how many new forms may be expected to be brought to light in strata with which we are already best acquainted, to say nothing of the new formations which geologists are continually discovering.
CHAPTER 23. -- ORIGIN AND DEVELOPMENT OF LANGUAGES AND SPECIES COMPARED [43].
Aryan Hypothesis and Controversy.
The Races of Mankind change more slowly than their Languages.
Theory of the gradual Origin of Languages.
Difficulty of defining what is meant by a Language as distinct from a Dialect.
Great Number of extinct and living Tongues.
No European Language a Thousand Years old.
Gaps between Languages, how caused.
Imperfection of the Record.
Changes always in Progress.
Struggle for Existence between rival Terms and Dialects.
Causes of Selection.
Each Language formed slowly in a single Geographical Area.
May die out gradually or suddenly.
Once lost can never be revived.
Mode of Origin of Languages and Species a Mystery.
Speculations as to the Number of original Languages or Species unprofitable.
The supposed existence, at a remote and unknown period, of a language conventionally called the Aryan, has of late years been a favourite subject of speculation among German philologists, and Professor Max Muller has given us lately the most improved version of this theory, and has set forth the various facts and arguments by which it may be defended, with his usual perspicuity and eloquence. He observes that if we know nothing of the existence of Latin--if all historical doc.u.ments previous to the fifteenth century had been lost--if tradition even was silent as to the former existence of a Roman empire, a mere comparison of the Italian, Spanish, Portuguese, French, Wallachian, and Rhaetian dialects would enable us to say that at some time there must have been a language from which these six modern dialects derive their origin in common. Without this supposition it would be impossible to account for their structure and composition, as, for example, for the forms of the auxiliary verb "to be," all evidently varieties of one common type, while it is equally clear that no one of the six affords the original form from which the others could have been borrowed. So also in none of the six languages do we find the elements of which these verbal and other forms could have been composed; they must have been handed down as relics from a former period, they must have existed in some antecedent language, which we know to have been the Latin.
But, in like manner, he goes on to show, that Latin itself, as well as Greek, Sanscrit, Zend (or Bactrian), Lithuanian, old Sclavonic, Gothic, and Armenian are also eight varieties of one common and more ancient type, and no one of them could have been the original from which the others were borrowed. They have all such an amount of mutual resemblance as to point to a more ancient language, the Aryan, which was to them what Latin was to the six Romance languages. The people who spoke this unknown parent speech, of which so many other ancient tongues were off-shoots, must have migrated at a remote era to widely separated regions of the old world, such as Northern Asia, Europe, and India south of the Himalaya.*
(* Max Muller, "Comparative Mythology" Oxford Essays 1856.)
The soundness of some parts of this Aryan hypothesis has lately been called in question by Mr. Crawfurd, on the ground that the Hindoos, Persians, Turks, Scandinavians, and other people referred to as having derived not only words but grammatical forms from an Aryan source, belong each of them to a distinct race, and all these races have, it is said, preserved their peculiar characters unaltered from the earliest dawn of history and tradition. If, therefore, no appreciable change has occurred in three or four thousand years, we should be obliged to a.s.sume a far more remote date for the first branching off of such races from a common stock than the supposed period of the Aryan migrations, and the dispersion of that language over many and distant countries.
But Mr. Crawfurd has, I think, himself helped us to remove this stumbling-block, by admitting that a nation speaking a language allied to the Sanscrit (the oldest of the eight tongues alluded to), once probably inhabited that region situated to the north-west of India, which within the period of authentic history has poured out its conquering hordes over a great extent of Western Asia and Eastern Europe. The same people, he says, may have acted the same part in the long, dark night which preceded the dawn of tradition.*
(* Crawfurd, "Transactions of the Ethnological Society"
volume 1 1861.)