LightNovesOnl.com

The Farm That Won't Wear Out Part 3

The Farm That Won't Wear Out - LightNovelsOnl.com

You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.

In a word, normal soils are deficient in phosphorus, and the application of phosphorus in good systems of farming produces marked and profitable increases in crop yields. But what form of phosphorus shall we apply? This is a very important question in agricultural economics, for we have many different kinds of fertilizing materials that contain phosphorus, and one may cost ten times as much as another as a source of phosphorus. Thus 250 pounds of phosphorus in a ton of finely ground natural rock phosphate can be purchased at the mines in Tennessee and delivered at the farmer's railway station in the heart of the Corn Belt for $8. Or the ton of raw phosphate may be mixed with a ton of sulfuric acid in the fertilizer factory, and the two tons of acid phosphate may be sold to the same farmer for $32. Or the fertilizer manufacturer may mix the two tons of acid phosphate with two tons of "filler," containing a little nitrogen and pota.s.sium, and then sell the same farmer the four tons of so-called "complete" fertilizer for $80; and the farmer gets no more phosphorus in the four tons of "complete" fertilizer for $80 than in the one ton of natural phosphate for $8.

The Pennsylvania State College conducted an experiment for twelve years--1884 to 1895--in which $1.05 an acre was invested in ground raw rock phosphate with a rotation of corn, oats, wheat and hay (clover and timothy), and the value of the increase produced by the phosphorus amounted to $5.85 as an average for the twelve years, and to $8.41 as an average for the last four years. Thus the profit was from about 560 to 800 per cent on the investment, counting corn at 35 cents a bushel, oats at 30 cents, wheat at 70 cents, and hay at $6 a ton. These figures represent the increase produced by phosphorus over and above the value of the crops grown without phosphorus fertilizer. In this case no farm manure was used on either part of the field; but commercial nitrogen and pota.s.sium were applied alike on both parts, and clover was grown in the rotation.

Acid phosphate was also used in direct comparison; and, in answer to the question whether the general farmer should apply liberal amounts of finely ground natural rock phosphate, or whether he should pay four times as much for phosphorus after the fertilizer manufacturer has mixed one part of the raw rock with one of sulfuric acid and thus produced two parts of acid phosphate, these Pennsylvania experiments tell us that the yearly average for the twelve years gave a gain per year of $2.45 from the raw phosphate and 48 cents from the acid phosphate, at the prices used by the Pennsylvania Experiment Station. But we must not draw general conclusions from this one experiment, even though it covers twelve years.

In 1895 the Maryland Experiment Station began field experiments with different forms of phosphorus; and, as an average of six tests every year for twelve years, $1.965 invested in ground raw rock phosphate produced increases in corn, wheat and hay that were worth $22.11, at 35 cents a bushel for corn, 70 cents for wheat, $6 a ton for hay, and 3 cents a pound for phosphorus in the ground natural phosphate.

How would you like 1000 per cent profit as the result of mixing brain with brawn, in connection with the improvement of your own business, thus keeping the investment under your own control?

Mind you, this does not prove that farming is profitable, but only that the intelligent use of phosphorus in farming is profitable. In other words the admixture--brains--is profitable.

In commenting upon his investigations the director of the Maryland Agricultural Experiment Station states that the raw phosphate produced a higher total average yield than acid phosphate, and at less than half the cost.

The Rhode Island Experiment Station began a series of experiments with different forms of phosphorus in 1894. If we add together all the hay and grain crops grown during the decade following the first year of these experiments, we find that the increases per acre were 14,580 pounds for raw phosphate and 14,550 pounds for acid phosphate, on unlimed land; while lime and raw phosphate produced 27,030 pounds, and lime and acid phosphate 29,690 pounds, of increase; and the acid phosphate cost three times as much as the raw phosphate.

In commenting upon these investigations the director of the Rhode Island Experiment Station states that the raw phosphate gave very good results with such farm crops as oats, peas, crimson clover, millet, soy beans, and so forth, but very poor results with such garden crops as turnips, rutabagas, cabbage, beets, lettuce, squash, and so forth, and its use for these garden crops is not advised.

In 1890 the Ma.s.sachusetts Experiment Station began investigations with different phosphates applied in equal money value, and in his report for 1900 the director states that the raw rock phosphate ranks above the acid phosphate both as an average for the entire period and as an average between 1895 and 1900, during which time the land to which no phosphorus was applied produced only 55 per cent as much as where raw phosphate was used--a result worth every farmer's consideration.

More Bushels and Tons

The Ohio Agricultural Experiment Station has reported investigations covering sixteen years in which raw phosphate was compared with acid phosphate costing twice as much per acre. As an average of all results secured, 320 pounds of raw phosphate applied with manure on clover sod produced 8.4 bushels more corn, 4.7 bushels more wheat, and 0.49 ton more hay per acre than where manure alone was used, and 320 pounds of acid phosphate, costing twice as much money but containing only half as much phosphorus, applied with the same amount of manure, produced 7.5 bushels more corn, 5.1 bushels more wheat, and 0.46 ton more hay than where the manure alone was used.

Now I have presented the averages or summaries of all investigations that have been reported covering ten years or more where equal money values of raw phosphate and acid phosphate have been used, or where any apparent provision was made to supply some organic manure, whether as farm manure, green manure or merely as clover grown in the rotation; and I invite the reader to mix his own brains with these data and not to expect me to state whether he should use the relatively cheap ground natural phosphate rock or the more costly manufactured acidulated phosphate in the improvement of his own soil in systems of permanent profitable agriculture.

Making Phosphate Available

If the natural rock is used it should be ground so that at least 90 per cent will pa.s.s through a sieve with 10,000 meshes to the square inch, and of course its content of phosphorus (from 12 to 15 per cent) or of so-called "phosphoric acid" (from 27 to 34 per cent) should also be guaranteed. Moreover it should be used liberally and in connection with plenty of decaying organic matter. People sometimes ask, "How much of the phosphorus in raw phosphate is available?" The best answer to this question is, "None of it; and, if you are not going to make it available, don't use it."

On my own farm I use about one ton per acre of raw phosphate once every six years, thus adding at least 250 pounds of phosphorus at a cost of less than $8; whereas 200 pounds of the common "complete"

fertilizer per acre yearly would cost $12 every six years, and would supply only 40 pounds of phosphorus. I do not use "complete"

fertilizers, because there is plenty of nitrogen in the air and plenty of pota.s.sium in the soil; and because, by growing and plowing under plenty of clover, I not only secure nitrogen from the air and liberate pota.s.sium from the soil but also liberate the phosphorus from the raw rock phosphate applied to the soil. In beginning the use of raw phosphate where the supply of organic manures is limited, I apply one ton of phosphate and 600 pounds of kainit in intimate connection, turn them under, preferably with organic matter, then add ground limestone if needed, and thus prepare to grow clover.

By far the most important agencies under the farmer's control for the liberation of plant food are the decomposition products of fermenting or decaying organic matter, such as green manures, crop residues and ordinary farm manures. In the decomposition of these organic materials sour or acid products are formed. Thus vinegar, containing acetic acid, is formed from the fermentation of apple juice, hard cider being an intermediate product. Sweet, chopped, immature field corn becomes sour silage in the silo, lactic, acetic, carbonic and other acids being formed. By a similar process cabbage is turned into sauerkraut. Likewise sweet milk becomes sour, with the formation of lactic acid. Oxalic, citric, tartaric, succinic, malic, gallic and tannic are other well-known organic acids. Some of these are contained in the sap or juice of certain plants, and these or others are formed when crop residues are decomposed in the soil.

In the ultimate decomposition of organic matter the carbon appears in the form of carbon dioxid which when combined with water forms carbonic acid. Though this is a very weak acid, its solvent action is very important.

But, in addition to the various organic acids and carbonic acid, we have also to consider the formation of nitric acid in connection with the decomposition of organic manures. Nitric acid is one of the strongest known, and in solvent power it is excelled by no single acid. The nitrogen contained in crop residues and other organic manures is chiefly in chemical combination with carbon, oxygen and hydrogen, much of it in insoluble protein compounds. Normally this organic nitrogen is transformed in the soil, first into ammonia nitrogen, next into nitrite nitrogen, and lastly into nitrate nitrogen, these three transformations being effected by biochemical action produced by different kinds of living microscopic organisms called bacteria. Though detectable amounts of free nitric acid do not acc.u.mulate during this process of nitrification, the soluble nitrate or final product is formed by the action of nitric acid upon a mineral base, such as calcium, magnesium, or pota.s.sium, which may have been in the soil in insoluble form, so that the nitrogen must pa.s.s through the form of nitric acid in the transformation into nitrates.

While the organic matter applied to the soil contains about twenty times as much carbon as nitrogen, and while corresponding amounts of carbonic acid and important amounts of intermediate organic acids must be formed, it is of much interest to know that even the nitric acid formed in the transformation of organic nitrogen to nitrate nitrogen in sufficient quant.i.ty for a given crop is seven times as much acid as would be required to convert raw rock phosphate into soluble phosphate to furnish the phosphorus required for the same crop. A knowledge of this definite quant.i.tative relations.h.i.+p should help us to appreciate the possibilities of decaying organic manures in the important matter of making plant food available, including pota.s.sium, calcium and magnesium as well as phosphorus and nitrogen.

The value of rye, rape, buckwheat and other non-legumes when used as green manures is very largely due to the liberation of plant food by their decomposition in contact with the natural phosphates, potash and other minerals contained in the soil. The farmer has no more important business than that of making plant food available, especially by supplying liberal amounts of decaying organic matter.

The following suggestions are offered to the land owner:

To enrich the soil apply liberal amounts of limestone, organic manures and phosphorus.

To enrich the seller apply small amounts of high-priced "complete"

commercial fertilizers.

Thus the average of seventy-three "Cooperative Fertilizer Tests on Clay and Loam Soils," extending into thirty-eight different counties in Indiana (Bulletin 155), shows 13 cents as the farmer's profit from each dollar spent for "complete" fertilizers used for corn, oats, wheat, timothy, and potatoes, if valued in the field at 40 cents a bushel for corn, 30 cents for oats, 80 cents for wheat, 50 cents for potatoes, and at $10 a ton for hay, over and above the extra expense for harvesting and marketing the increase, and of course the soil grows poorer, because the crops harvested removed much more plant food than the fertilizers supplied.

CHAPTER IV

PERMANENT SOIL FERTILITY

Its Relation to Profits and Future Values

THOUGH intelligent soil improvement is the most profitable business in which an honest man can engage, ordinary farming is not a highly remunerative occupation, and to a large extent the fortune of the farmer is bound up with the increase or depreciation in the market value of his land. There are at least three important factors of influence which induce people to continue farming:

First, the farmer is his own employer. He controls his own job, is his own boss and has no superior officer to lay him off because of disagreement, dull business or political preferment. Farmers const.i.tute by far the largest cla.s.s of citizens who own their own business, and are thus "independent."

Second, the farmer is able as a rule to make some sort of a living for his family very largely out of the produce of the farm, so that he gets some return for his labor in terms of food, even when there is no profit in farming as a business; whereas the wage-earner of the city, as soon as his wages stop and his savings and credit are exhausted, must see his family supported by charity or starve. This is not fiction, but fact.

Third, land is usually considered a safe investment, in which one may hold a perfect and undivided t.i.tle to his property; and people will retain possession of a farm even when it pays a low rate of interest, rather than sell and invest the proceeds in some other enterprise which they cannot control as individuals or which may suddenly depreciate in earning power, fail or be utterly destroyed.

Is Land a Safe Investment?

Though it is true that farm land does not pa.s.s out of existence in a day, nevertheless it is by no means a safe investment, as witness the numerous abandoned farms in the older agricultural sections of this new country. It is easily possible for one of means to become land-poor--to have investments in land which will not pay the taxes and upkeep of buildings, fences and so forth. At prevailing prices for farm produce and labor there are vast areas of land in the older states far past the point of possible self-redemption; and, as a matter of business, one might better burn his money and save his energy than to expend all his resources in half-paying for such depleted land, depending upon the immediate income from it to raise a mortgage covering the unpaid balance.

Intelligent optimism is admirable, but fact is better than fiction; and blind bigotry paraded as optimism is dangerous and condemnable.

Some one has said that such a bigot is not an optimist but a "cheerful idiot." To purchase rich, well-watered land at a low price and become wealthy by merely waiting till the land increases in value tenfold, while making a living by taking fertility from the soil, has been easy and common in the great agricultural states during the last half-century. But, paradoxical as it may seem, land values have increased while fertility and productiveness have decreased and, with shorter days for higher priced and less efficient farm labor, with more middlemen absorbing the profits between the producer and the consumer, it is now difficult indeed to buy land with borrowed money and pay for it from subsequent farm profits. If continued soil depletion is practiced, ultimate failure is the only future for such investments.

That vast areas of land once cultivated with profit in the original thirteen states now lie agriculturally abandoned is common knowledge; and that the farm lands of the great Corn Belt and Wheat Belt of the North-Central states are even now undergoing the most rapid soil depletion ever witnessed is known to all who possess the facts. Unless this tendency is checked these lands will go the way of the abandoned farms.

Some Broad Facts

The United States Bureau of the Census reports that the total production of our five great grain crops--corn, wheat, oats, barley and rye--amounted to 4,414,000,000 bushels in 1899, and to 4,445,000,000 bushels in 1909, an increase of less than one per cent. Furthermore, if we a.s.sume the average production reported by the United States Department of Agriculture for the three-year periods 1898 to 1900 and 1908 to 1910 as the normal for 1899, and 1909, respectively, and compare these averages with the production actually reported by that department for 1899 and 1909, we find that as an average of all these crops 1909 was a slightly more favorable season than 1899, which indicates that with strictly comparable seasons the increase from 1899 to 1909 was less than 1/2 per cent in the production of these five great grain crops of the United States.

On the other hand, the Bureau of Census reports that during the same decade the acreage of farm land in the United States increased by 4.8 per cent, and that the acreage of improved farm land-that is, farmed land-increased by 154 per cent. Thus the census data plainly show reduced yield per acre. In addition we have actual records which show that during the decade our wheat exports decreased from 210,000,000 to 108,000,000 bushels, and that our corn exports decreased from 196,000,000 to 49,000,000 bushels, in order to help feed the increase of 21 per cent in our population. And yet the people complained of the high cost of plain living and many have been forced to adopt lower standards for the table. Meanwhile the value of the farm land in the United States increased by 118 per cent during the ten years--from $13,000,000,000 to $28,500,000,000--as reported by the Bureau of Census.

The Value of Land

The great primary reason why land values have increased so markedly during the last thirty years is that America has no more free land of good quality in humid sections. Civilized man is characterized by hunger for the owners.h.i.+p of land. Our population continues to increase by more than 20 per cent each decade, but all future possible additions to the farm lands of the United States amount to only 9 per cent of the present acreage, and most of this small addition requires expensive irrigation or drainage.

If it cost $4 an acre to raise corn, 5 cents a bushel to harvest and market the crop, 9 cents a bushel to maintain the fertility of the soil, and 1/2 per cent on the value of the land for taxes, then, if money is worth 5 per cent, land that produces 20 bushels of 40-cent corn is worth $21.81 an acre. On the same basis, what would land be worth that produces 40 bushels of corn and equivalent values of other crops? At first thought one might say, $43.62; but this answer would be far from the correct one, which is $116.36.

And, if we again double the yield, making it 80 bushels an acre, the value of the land becomes not $87.24, and not $232.72; but easy computation will show that the gross receipts from an 80-bushel crop will pay $7.20 an acre for soil enrichment, $4 for raising the crop, $4 for harvesting and marketing, $1.53 for taxes and 5 per cent interest on a valuation of $305.45 an acre.

The average yield of corn in the United States is only 25 bushels an acre, and the average net returns even from the farms of the Corn Belt will not pay 4 per cent interest on their present market value.

But the intelligent investment of $2 an acre annually in positive soil enrichment will increase the crop yield by two bushels of corn each year--or by equivalent amounts of other crops grown in the rotation--and will maintain this increase for at least a dozen years on the average land now under cultivation in the United States; and no other safe investment can be named that will pay so great returns. Of course, the cost is $1 a bushel for the first year's increase, and even the second year the 4 bushels of corn cost $2; but what is the cost per bushel of the increase the tenth year? It is 10 cents; and the twelfth year the 24 bushels of increase cost only 8-1/3 cents a bushel, with a return of nearly 500 per cent on the annual investment in soil improvement.

Click Like and comment to support us!

RECENTLY UPDATED NOVELS

About The Farm That Won't Wear Out Part 3 novel

You're reading The Farm That Won't Wear Out by Author(s): Cyril G. Hopkins. This novel has been translated and updated at LightNovelsOnl.com and has already 790 views. And it would be great if you choose to read and follow your favorite novel on our website. We promise you that we'll bring you the latest novels, a novel list updates everyday and free. LightNovelsOnl.com is a very smart website for reading novels online, friendly on mobile. If you have any questions, please do not hesitate to contact us at [email protected] or just simply leave your comment so we'll know how to make you happy.