LightNovesOnl.com

Darwin and Modern Science Part 9

Darwin and Modern Science - LightNovelsOnl.com

You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.

Definite progress in the method of single-ear sowing has, however, been made only recently. It had been foreshadowed by Patrick s.h.i.+rreff, who after the production of the four varieties already mentioned, tried to carry out his work on a larger scale, by including numerous minor deviations from the main type. He found by doing so that the chances of obtaining a better form were sufficiently increased to justify the trial. But it was Nilsson who discovered the almost inexhaustible polymorphy of cereals and other agricultural crops and made it the starting-point for a new and entirely trustworthy method of the highest utility. By this means he has produced during the last fifteen years a number of new and valuable races, which have already supplanted the old types on numerous farms in Sweden and which are now being introduced on a large scale into Germany and other European countries.

It is now twenty years since the station at Svalof was founded. During the first period of its work, embracing about five years, selection was practised on the principle which was then generally used in Germany. In order to improve a race a sample of the best ears was carefully selected from the best fields of the variety. These ears were considered as representatives of the type under cultivation, and it was a.s.sumed that by sowing their grains on a small plot a family could be obtained, which could afterwards be improved by a continuous selection. Differences between the collected ears were either not observed or disregarded. At Svalof this method of selection was practised on a far larger scale than on any German farm, and the result was, broadly speaking, the same.

This may be stated in the following words: improvement in a few cases, failure in all the others. Some few varieties could be improved and yielded excellent new types, some of which have since been introduced into Swedish agriculture and are now prominent races in the southern and middle parts of the country. But the station had definite aims, and among them was the improvement of the Chevalier barley. This, in Middle Sweden, is a fine brewer's barley, but liable to failure during unfavourable summers on account of its slender stems. It was selected with a view of giving it stiffer stems, but in spite of all the care and work bestowed upon it no satisfactory result was obtained.

This experience, combined with a number of a.n.a.logous failures, could not fail to throw doubt upon the whole method. It was evident that good results were only exceptions, and that in most cases the principle was not one that could be relied upon. The exceptions might be due to unknown causes, and not to the validity of the method; it became therefore of much more interest to search for the causes than to continue the work along these lines.

In the year 1892 a number of different varieties of cereals were cultivated on a large scale and a selection was again made from them. About two hundred samples of ears were chosen, each apparently const.i.tuting a different type. Their seeds were sown on separate plots and manured and treated as much as possible in the same manner. The plots were small and arranged in rows so as to facilitate the comparison of allied types. During the whole period of growth and during the ripening of the ears the plots were carefully studied and compared: they were harvested separately; ears and kernels were counted and weighed, and notes were made concerning layering, rust and other cereal pests.

The result of this experiment was, in the main, no distinct improvement.

Nilsson was especially struck by the fact that the plots, which should represent distinct types, were far from uniform. Many of them were as multiform as the fields from which the parent-ears were taken. Others showed variability in a less degree, but in almost all of them it was clear that a pure race had not been obtained. The experiment was a fair one, inasmuch as it demonstrated the polymorphic variability of cereals beyond all doubt and in a degree hitherto unsuspected; but from the standpoint of the selectionist it was a failure. Fortunately there were, however, one or two exceptions. A few lots showed a perfect uniformity in regard to all the stalks and ears: these were small families. This fact suggested the idea that each might have been derived from a single ear. During the selection in the previous summer, Nilsson had tried to find as many ears as possible of each new type which he recognised in his fields. But the variability of his crops was so great, that he was rarely able to include more than two or three ears in the same group, and, in a few cases, he found only one representative of the supposed type. It might, therefore, be possible that those small uniform plots were the direct progeny of ears, the grains of which had not been mixed with those from other ears before sowing. Exact records had, of course, been kept of the chosen samples, and the number of ears had been noted in each case. It was, therefore, possible to answer the question and it was found that those plots alone were uniform on which the kernels of one single ear only had been sown. Nilsson concluded that the mixture of two or more ears in a single sowing might be the cause of the lack of uniformity in the progeny. Apparently similar ears might be different in their progeny.

Once discovered, this fact was elevated to the rank of a leading principle and tested on as large a scale as possible. The fields were again carefully investigated and every single ear, which showed a distinct divergence from the main type in one character or another, was selected. A thousand samples were chosen, but this time each sample consisted of one ear only. Next year, the result corresponded to the expectation. Uniformity prevailed almost everywhere; only a few lots showed a discrepancy, which might be ascribed to the accidental selection of hybrid ears. It was now clear that the progeny of single ears was, as a rule, pure, whereas that of mixed ears was impure.

The single-ear selection or single-ear sowing, which had fallen into discredit in Germany and elsewhere in Europe, was rediscovered. It proved to be the only trustworthy principle of selection. Once isolated, such single-parent races are constant from seed and remain true to their type. No further selection is needed; they have simply to be multiplied and their real value tested.

Patrick s.h.i.+rreff, in his early experiments, Le Couteur, Hays and others had observed the rare occurrence of exceptionally good yielders and the value of their isolation to the agriculturist. The possibility of error in the choice of such striking specimens and the necessity of judging their value by their progeny were also known to these investigators, but they had not the slightest idea of all the possibilities suggested by their principle. Nilsson, who is a botanist as well as an agriculturist, discovered that, besides these exceptionably good yielders, every variety of a cereal consists of hundreds of different types, which find the best conditions for success when grown together, but which, after isolation, prove to be constant. Their preference for mixed growth is so definite, that once isolated, their claims on manure and treatment are found to be much higher than those of the original mixed variety.

Moreover, the greatest care is necessary to enable them to retain their purity, and as soon as they are left to themselves they begin to deteriorate through accidental crosses and admixtures and rapidly return to the mixed condition.

Reverting now to Darwin's discussion of the variability of cereals, we may conclude that subsequent investigation has proved it to be exactly of the kind which he describes. The only difference is that in reality it reaches a degree, quite unexpected by Darwin and his contemporaries.

But it is polymorphic variability in the strictest sense of the word.

How the single const.i.tuents of a variety originate we do not see. We may a.s.sume, and there can hardly be a doubt about the truth of the a.s.sumption, that a new character, once produced, will slowly but surely be combined through accidental crosses with a large number of previously existing types, and so will tend to double the number of the const.i.tuents of the variety. But whether it first appears suddenly or whether it is only slowly evolved we cannot determine. It would, of course, be impossible to observe either process in such a mixture. Only cultures of pure races, of single-parent races as we have called them, can afford an opportunity for this kind of observation. In the fields of Svalof new and unexpected qualities have recently been seen, from time to time, to appear suddenly. These characters are as distinct as the older ones and appear to be constant from the moment of their origin.

Darwin has repeatedly insisted that man does not cause variability. He simply selects the variations given to him by the hand of nature. He may repeat this process in order to acc.u.mulate different new characters in the same family, thus producing varieties of a higher order. This process of acc.u.mulation would, if continued for a longer time, lead to the augmentation of the slight differences characteristic of varieties into the greater differences characteristic of species and genera. It is in this way that horticultural and agricultural experience contribute to the problem of the conversion of varieties into species, and to the explanation of the admirable adaptations of each organism to its complex conditions of life. In the long run new forms, distinguished from their allies by quite a number of new characters, would, by the extermination of the older intermediates, become distinct species.

Thus we see that the theory of the origin of species by means of natural selection is quite independent of the question, how the variations to be selected arise. They may arise slowly, from simple fluctuations, or suddenly, by mutations; in both cases natural selection will take hold of them, will multiply them if they are beneficial, and in the course of time acc.u.mulate them, so as to produce that great diversity of organic life, which we so highly admire.

Darwin has left the decision of this difficult and obviously subordinate point to his followers. But in his Pangenesis hypothesis he has given us the clue for a close study and ultimate elucidation of the subject under discussion.

V. HEREDITY AND VARIATION IN MODERN LIGHTS. By W. Bateson, M.A., F.R.S.

Professor of Biology in the University of Cambridge.

Darwin's work has the property of greatness in that it may be admired from more aspects than one. For some the perception of the principle of Natural Selection stands out as his most wonderful achievement to which all the rest is subordinate. Others, among whom I would range myself, look up to him rather as the first who plainly distinguished, collected, and comprehensively studied that new cla.s.s of evidence from which hereafter a true understanding of the process of Evolution may be developed. We each prefer our own standpoint of admiration; but I think that it will be in their wider aspect that his labours will most command the veneration of posterity.

A treatise written to advance knowledge may be read in two moods. The reader may keep his mind pa.s.sive, willing merely to receive the impress of the writer's thought; or he may read with his attention strained and alert, asking at every instant how the new knowledge can be used in a further advance, watching continually for fresh footholds by which to climb higher still. Of Sh.e.l.ley it has been said that he was a poet for poets: so Darwin was a naturalist for naturalists. It is when his writings are used in the critical and more exacting spirit with which we test the outfit for our own enterprise that we learn their full value and strength. Whether we glance back and compare his performance with the efforts of his predecessors, or look forward along the course which modern research is disclosing, we shall honour most in him not the rounded merit of finite accomplishment, but the creative power by which he inaugurated a line of discovery endless in variety and extension.

Let us attempt thus to see his work in true perspective between the past from which it grew, and the present which is its consequence. Darwin attacked the problem of Evolution by reference to facts of three cla.s.ses: Variation; Heredity; Natural Selection. His work was not as the laity suppose, a sudden and unheralded revelation, but the first fruit of a long and hitherto barren controversy. The occurrence of variation from type, and the hereditary transmission of such variation had of course been long familiar to practical men, and inferences as to the possible bearing of those phenomena on the nature of specific difference had been from time to time drawn by naturalists. Maupertuis, for example, wrote "Ce qui nous reste a examiner, c'est comment d'un seul individu, il a pu naitre tant d'especes si differentes." And again "La Nature contient le fonds de toutes ces varietes: mais le hasard ou l'art les mettent en oeuvre. C'est ainsi que ceux dont l'industrie s'applique a satisfaire le gout des curieux, sont, pour ainsi dire, creatures d'especes nouvelles." ("Venus Physique, contenant deux Dissertations, l'une sur l'origine des Hommes et des Animaux: Et l'autre sur l'origine des Noirs" La Haye, 1746, pages 124 and 129. For an introduction to the writings of Maupertuis I am indebted to an article by Professor Lovejoy in "Popular Sci. Monthly", 1902.)

Such pa.s.sages, of which many (though few so emphatic) can be found in eighteenth century writers, indicate a true perception of the mode of Evolution. The speculations hinted at by Buffon (For the fullest account of the views of these pioneers of Evolution, see the works of Samuel Butler, especially "Evolution, Old and New" (2nd edition) 1882. Butler's claims on behalf of Buffon have met with some acceptance; but after reading what Butler has said, and a considerable part of Buffon's own works, the word "hinted" seems to me a sufficiently correct description of the part he played. It is interesting to note that in the chapter on the a.s.s, which contains some of his evolutionary pa.s.sages, there is a reference to "plusieurs idees tres-elevees sur la generation" contained in the Letters of Maupertuis.), developed by Erasmus Darwin, and independently proclaimed above all by Lamarck, gave to the doctrine of descent a wide renown. The uniformitarian teaching which Lyell deduced from geological observation had gained acceptance. The facts of geographical distribution (See especially W. Lawrence, "Lectures on Physiology", London, 1823, pages 213 f.) had been shown to be obviously inconsistent with the Mosaic legend. Prichard, and Lawrence, following the example of Blumenbach, had successfully demonstrated that the races of Man could be regarded as different forms of one species, contrary to the opinion up till then received. These treatises all begin, it is true, with a profound obeisance to the sons of Noah, but that performed, they continue on strictly modern lines. The question of the mutability of species was thus prominently raised.

Those who rate Lamarck no higher than did Huxley in his contemptuous phrase "buccinator tantum," will scarcely deny that the sound of the trumpet had carried far, or that its note was clear. If then there were few who had already turned to evolution with positive conviction, all scientific men must at least have known that such views had been promulgated; and many must, as Huxley says, have taken up his own position of "critical expectancy." (See the chapter contributed to the "Life and Letters of Charles Darwin" II. page 195. I do not clearly understand the sense in which Darwin wrote (Autobiography, ibid. I. page 87): "It has sometimes been said that the success of the "Origin" proved 'that the subject was in the air,' or 'that men's minds were prepared for it.' I do not think that this is strictly true, for I occasionally sounded not a few naturalists, and never happened to come across a single one who seemed to doubt about the permanence of species." This experience may perhaps have been an accident due to Darwin's isolation.

The literature of the period abounds with indications of "critical expectancy." A most interesting expression of that feeling is given in the charming account of the "Early Days of Darwinism" by Alfred Newton, "Macmillan's Magazine", LVII. 1888, page 241. He tells how in 1858 when spending a dreary summer in Iceland, he and his friend, the ornithologist John Wolley, in default of active occupation, spent their days in discussion. "Both of us taking a keen interest in Natural History, it was but reasonable that a question, which in those days was always coming up wherever two or more naturalists were gathered together, should be continually recurring. That question was, 'What is a species?' and connected therewith was the other question, 'How did a species begin?'... Now we were of course fairly well acquainted with what had been published on these subjects." He then enumerates some of these publications, mentioning among others T. Vernon Wollaston's "Variation of Species"--a work which has in my opinion never been adequately appreciated. He proceeds: "Of course we never arrived at anything like a solution of these problems, general or special, but we felt very strongly that a solution ought to be found, and that quickly, if the study of Botany and Zoology was to make any great advance." He then describes how on his return home he received the famous number of the "Linnean Journal" on a certain evening. "I sat up late that night to read it; and never shall I forget the impression it made upon me. Herein was contained a perfectly simple solution of all the difficulties which had been troubling me for months past... I went to bed satisfied that a solution had been found.")

Why, then, was it, that Darwin succeeded where the rest had failed?

The cause of that success was two-fold. First, and obviously, in the principle of Natural Selection he had a suggestion which would work. It might not go the whole way, but it was true as far as it went. Evolution could thus in great measure be fairly represented as a consequence of demonstrable processes. Darwin seldom endangers the mechanism he devised by putting on it strains much greater than it can bear. He at least was under no illusion as to the omnipotence of Selection; and he introduces none of the forced pleading which in recent years has threatened to discredit that principle.

For example, in the latest text of the "Origin" ("Origin", (6th edition (1882), page 421.)) we find him saying:

"But as my conclusions have lately been much misrepresented, and it has been stated that I attribute the modification of species exclusively to natural selection, I may be permitted to remark that in the first edition of this work, and subsequently, I placed in a most conspicuous position--namely, at the close of the Introduction--the following words: 'I am convinced that natural selection has been the main but not the exclusive means of modification.'"

But apart from the invention of this reasonable hypothesis, which may well, as Huxley estimated, "be the guide of biological and psychological speculation for the next three or four generations," Darwin made a more significant and imperishable contribution. Not for a few generations, but through all ages he should be remembered as the first who showed clearly that the problems of Heredity and Variation are soluble by observation, and laid down the course by which we must proceed to their solution. (Whatever be our estimate of the importance of Natural Selection, in this we all agree. Samuel Butler, the most brilliant, and by far the most interesting of Darwin's opponents--whose works are at length emerging from oblivion--in his Preface (1882) to the 2nd edition of "Evolution, Old and New", repeats his earlier expression of homage to one whom he had come to regard as an enemy: "To the end of time, if the question be asked, 'Who taught people to believe in Evolution?' the answer must be that it was Mr. Darwin. This is true, and it is hard to see what palm of higher praise can be awarded to any philosopher.") The moment of inspiration did not come with the reading of Malthus, but with the opening of the "first note-book on Trans.m.u.tation of Species." ("Life and Letters", I. pages 276 and 83.) Evolution is a process of Variation and Heredity. The older writers, though they had some vague idea that it must be so, did not study Variation and Heredity. Darwin did, and so begat not a theory, but a science.

The extent to which this is true, the scientific world is only beginning to realise. So little was the fact appreciated in Darwin's own time that the success of his writings was followed by an almost total cessation of work in that special field. Of the causes which led to this remarkable consequence I have spoken elsewhere. They proceeded from circ.u.mstances peculiar to the time; but whatever the causes there is no doubt that this statement of the result is historically exact, and those who make it their business to collect facts elucidating the physiology of Heredity and Variation are well aware that they will find little to reward their quest in the leading scientific Journals of the Darwinian epoch.

In those thirty years the original stock of evidence current and in circulation even underwent a process of attrition. As in the story of the Eastern sage who first wrote the collected learning of the universe for his sons in a thousand volumes, and by successive compression and burning reduced them to one, and from this by further burning distilled the single e.j.a.c.u.l.a.t.i.o.n of the Faith, "There is no G.o.d but G.o.d and Mohamed is the Prophet of G.o.d," which was all his maturer wisdom deemed essential:--so in the books of that period do we find the corpus of genetic knowledge dwindle to a few prerogative instances, and these at last to the brief formula of an unquestioned creed.

And yet in all else that concerns biological science this period was, in very truth, our Golden Age, when the natural history of the earth was explored as never before; morphology and embryology were exhaustively ransacked; the physiology of plants and animals began to rival chemistry and physics in precision of method and in the rapidity of its advances; and the foundations of pathology were laid.

In contrast with this immense activity elsewhere the neglect which befel the special physiology of Descent, or Genetics as we now call it, is astonis.h.i.+ng. This may of course be interpreted as meaning that the favoured studies seemed to promise a quicker return for effort, but it would be more true to say that those who chose these other pursuits did so without making any such comparison; for the idea that the physiology of Heredity and Variation was a coherent science, offering possibilities of extraordinary discovery, was not present to their minds at all. In a word, the existence of such a science was well nigh forgotten. It is true that in ancillary periodicals, as for example those that treat of entomology or horticulture, or in the writings of the already isolated systematists (This isolation of the systematists is the one most melancholy sequela of Darwinism. It seems an irony that we should read in the peroration to the "Origin" that when the Darwinian view is accepted "Systematists will be able to pursue their labours as at present; but they will not be incessantly haunted by the shadowy doubt whether this or that form be a true species. This, I feel sure, and I speak after experience, will be no slight relief. The endless disputes whether or not some fifty species of British brambles are good species will cease." "Origin", 6th edition (1882), page 425. True they have ceased to attract the attention of those who lead opinion, but anyone who will turn to the literature of systematics will find that they have not ceased in any other sense. Should there not be something disquieting in the fact that among the workers who come most into contact with specific differences, are to be found the only men who have failed to be persuaded of the unreality of those differences?), observations with this special bearing were from time to time related, but the cla.s.s of fact on which Darwin built his conceptions of Heredity and Variation was not seen in the highways of biology. It formed no part of the official curriculum of biological students, and found no place among the subjects which their teachers were investigating.

During this period nevertheless one distinct advance was made, that with which Weismann's name is prominently connected. In Darwin's genetic scheme the hereditary transmission of parental experience and its consequences played a considerable role. Exactly how great that role was supposed to be, he with his habitual caution refrained from specifying, for the sufficient reason that he did not know. Nevertheless much of the process of Evolution, especially that by which organs have become degenerate and rudimentary, was certainly attributed by Darwin to such inheritance, though since belief in the inheritance of acquired characters fell into disrepute, the fact has been a good deal overlooked. The "Origin" without "use and disuse" would be a materially different book. A certain vacillation is discernible in Darwin's utterances on this question, and the fact gave to the astute Butler an opportunity for his most telling attack. The discussion which best ill.u.s.trates the genetic views of the period arose in regard to the production of the rudimentary condition of the wings of many beetles in the Madeira group of islands, and by comparing pa.s.sages from the "Origin" (6th edition pages 109 and 401. See Butler, "Essays on Life, Art, and Science", page 265, reprinted 1908, and "Evolution, Old and New", chapter XXII. (2nd edition), 1882.) Butler convicts Darwin of saying first that this condition was in the main the result of Selection, with disuse aiding, and in another place that the main cause of degeneration was disuse, but that Selection had aided. To Darwin however I think the point would have seemed one of dialectics merely. To him the one paramount purpose was to show that somehow an Evolution by means of Variation and Heredity might have brought about the facts observed, and whether they had come to pa.s.s in the one way or the other was a matter of subordinate concern.

To us moderns the question at issue has a diminished significance. For over all such debates a change has been brought by Weismann's challenge for evidence that use and disuse have any transmitted effects at all.

Hitherto the transmission of many acquired characteristics had seemed to most naturalists so obvious as not to call for demonstration. (W.

Lawrence was one of the few who consistently maintained the contrary opinion. Prichard, who previously had expressed himself in the same sense, does not, I believe repeat these views in his later writings, and there are signs that he came to believe in the transmission of acquired habits. See Lawrence, "Lect. Physiol." 1823, pages 436-437, 447 Prichard, Edin. Inaug. Disp. 1808 (not seen by me), quoted ibid. and "Nat. Hist. Man", 1843, pages 34 f.) Weismann's demand for facts in support of the main proposition revealed at once that none having real cogency could be produced. The time-honoured examples were easily shown to be capable of different explanations. A few certainly remain which cannot be so summarily dismissed, but--though it is manifestly impossible here to do justice to such a subject--I think no one will dispute that these residual and doubtful phenomena, whatever be their true nature, are not of a kind to help us much in the interpretation of any of those complex cases of adaptation which on the hypothesis of unguided Natural Selection are especially difficult to understand. Use and disuse were invoked expressly to help us over these hard places; but whatever changes can be induced in offspring by direct treatment of the parents, they are not of a kind to encourage hope of real a.s.sistance from that quarter. It is not to be denied that through the collapse of this second line of argument the Selection hypothesis has had to take an increased and perilous burden. Various ways of meeting the difficulty have been proposed, but these mostly resolve themselves into improbable attempts to expand or magnify the powers of Natural Selection.

Weismann's interpellation, though negative in purpose, has had a lasting and beneficial effect, for through his thorough demolition of the old loose and distracting notions of inherited experience, the ground has been cleared for the construction of a true knowledge of heredity based on experimental fact.

In another way he made a contribution of a more positive character, for his elaborate speculations as to the genetic meaning of cytological appearances have led to a minute investigation of the visible phenomena occurring in those divisions by which germ-cells arise. Though the particular views he advocated have very largely proved incompatible with the observed facts of heredity, yet we must acknowledge that it was chiefly through the stimulus of Weismann's ideas that those advances in cytology were made; and though the doctrine of the continuity of germ-plasm cannot be maintained in the form originally propounded, it is in the main true and illuminating. (It is interesting to see how nearly Butler was led by natural penetration, and from absolutely opposite conclusions, back to this underlying truth: "So that each ovum when impregnate should be considered not as descended from its ancestors, but as being a continuation of the personality of every ovum in the chain of its ancestry, which every ovum IT ACTUALLY IS quite as truly as the octogenarian IS the same ident.i.ty with the ovum from which he has been developed. This process cannot stop short of the primordial cell, which again will probably turn out to be but a brief resting-place. We therefore prove each one of us to BE ACTUALLY the primordial cell which never died nor dies, but has differentiated itself into the life of the world, all living beings whatever, being one with it and members one of another," "Life and Habit", 1878, page 86.) Nevertheless in the present state of knowledge we are still as a rule quite unable to connect cytological appearances with any genetic consequence and save in one respect (obviously of extreme importance--to be spoken of later) the two sets of phenomena might, for all we can see, be entirely distinct.

I cannot avoid attaching importance to this want of connection between the nuclear phenomena and the features of bodily organisation. All attempts to investigate Heredity by cytological means lie under the disadvantage that it is the nuclear changes which can alone be effectively observed. Important as they must surely be, I have never been persuaded that the rest of the cell counts for nothing. What we know of the behaviour and variability of chromosomes seems in my opinion quite incompatible with the belief that they alone govern form, and are the sole agents responsible in heredity. (This view is no doubt contrary to the received opinion. I am however interested to see it lately maintained by Driesch ("Science and Philosophy of the Organism", London, 1907, page 233), and from the recent observations of G.o.dlewski it has received distinct experimental support.)

If, then, progress was to be made in Genetics, work of a different kind was required. To learn the laws of Heredity and Variation there is no other way than that which Darwin himself followed, the direct examination of the phenomena. A beginning could be made by collecting fortuitous observations of this cla.s.s, which have often thrown a suggestive light, but such evidence can be at best but superficial and some more penetrating instrument of research is required. This can only be provided by actual experiments in breeding.

The truth of these general considerations was becoming gradually clear to many of us when in 1900 Mendel's work was rediscovered. Segregation, a phenomenon of the utmost novelty, was thus revealed. From that moment not only in the problem of the origin of species, but in all the great problems of biology a new era began. So unexpected was the discovery that many naturalists were convinced it was untrue, and at once proclaimed Mendel's conclusions as either altogether mistaken, or if true, of very limited application. Many fantastic notions about the workings of Heredity had been a.s.serted as general principles before: this was probably only another fancy of the same cla.s.s.

Nevertheless those who had a preliminary acquaintance with the facts of Variation were not wholly unprepared for some such revelation. The essential deduction from the discovery of segregation was that the characters of living things are dependent on the presence of definite elements or factors, which are treated as units in the processes of Heredity. These factors can thus be recombined in various ways. They act sometimes separately, and sometimes they interact in conjunction with each other, producing their various effects. All this indicates a definiteness and specific order in heredity, and therefore in variation.

This order cannot by the nature of the case be dependent on Natural Selection for its existence, but must be a consequence of the fundamental chemical and physical nature of living things. The study of Variation had from the first shown that an orderliness of this kind was present. The bodies and the properties of living things are cosmic, not chaotic. No matter how low in the scale we go, never do we find the slightest hint of a diminution in that all-pervading orderliness, nor can we conceive an organism existing for a moment in any other state.

Moreover not only does this order prevail in normal forms, but again and again it is to be seen in newly-sprung varieties, which by general consent cannot have been subjected to a prolonged Selection. The discovery of Mendelian elements admirably coincided with and at once gave a rationale of these facts. Genetic Variation is then primarily the consequence of additions to, or omissions from, the stock of elements which the species contains. The further investigation of the species-problem must thus proceed by the a.n.a.lytical method which breeding experiments provide.

In the nine years which have elapsed since Mendel's clue became generally known, progress has been rapid. We now understand the process by which a polymorphic race maintains its polymorphism. When a family consists of dissimilar members, given the numerical proportions in which these members are occurring, we can represent their composition symbolically and state what types can be transmitted by the various members. The difficulty of the "swamping effects of intercrossing" is practically at an end. Even the famous puzzle of s.e.x-limited inheritance is solved, at all events in its more regular manifestations, and we know now how it is brought about that the normal sisters of a colour-blind man can transmit the colour-blindness while his normal brothers cannot transmit it.

We are still only on the fringe of the inquiry. It can be seen extending and ramifying in many directions. To enumerate these here would be impossible. A whole new range of possibilities is being brought into view by study of the interrelations between the simple factors. By following up the evidence as to segregation, indications have been obtained which can only be interpreted as meaning that when many factors are being simultaneously redistributed among the germ-cells, certain of them exert what must be described as a repulsion upon other factors. We cannot surmise whither this discovery may lead.

In the new light all the old problems wear a fresh aspect. Upon the question of the nature of s.e.x, for example, the bearing of Mendelian evidence is close. Elsewhere I have shown that from several sets of parallel experiments the conclusion is almost forced upon us that, in the types investigated, of the two s.e.xes the female is to be regarded as heterozygous in s.e.x, containing one unpaired dominant element, while the male is similarly h.o.m.ozygous in the absence of that element. (In other words, the ova are each EITHER female, OR male (i.e. non-female), but the sperms are all non-female.) It is not a little remarkable that on this point--which is the only one where observations of the nuclear processes of gameto-genesis have yet been brought into relation with the visible characteristics of the organisms themselves--there should be diametrical opposition between the results of breeding experiments and those derived from cytology.

Those who have followed the researches of the American school will be aware that, after it had been found in certain insects that the spermatozoa were of two kinds according as they contained or did not contain the accessory chromosome, E.B. Wilson succeeded in proving that the sperms possessing this accessory body were destined to form FEMALES on fertilisation, while sperms without it form males, the eggs being apparently indifferent. Perhaps the most striking of all this series of observations is that lately made by T.H. Morgan (Morgan, "Proc. Soc.

Exp. Biol. Med." V. 1908, and von Baehr, "Zool. Anz." x.x.xII. page 507, 1908.), since confirmed by von Baehr, that in a Phylloxeran two kinds of spermatids are formed, respectively with and without an accessory (in this case, DOUBLE) chromosome. Of these, only those possessing the accessory body become functional spermatozoa, the others degenerating.

We have thus an elucidation of the puzzling fact that in these forms fertilisation results in the formation of FEMALES only. How the males are formed--for of course males are eventually produced by the parthenogenetic females--we do not know.

If the accessory body is really to be regarded as bearing the factor for femaleness, then in Mendelian terms female is DD and male is DR. The eggs are indifferent and the spermatozoa are each male, OR female.

But according to the evidence derived from a study of the s.e.x-limited descent of certain features in other animals the conclusion seems equally clear that in them female must be regarded as DR and male as RR. The eggs are thus each either male or female and the spermatozoa are indifferent. How this contradictory evidence is to be reconciled we do not yet know. The breeding work concerns fowls, canaries, and the Currant moth (Abraxas grossulariata). The accessory chromosome has been now observed in most of the great divisions of insects (As Wilson has proved, the unpaired body is not a universal feature even in those orders in which it has been observed. Nearly allied types may differ.

In some it is altogether unpaired. In others it is paired with a body of much smaller size, and by selection of various types all gradations can be demonstrated ranging to the condition in which the members of the pair are indistinguishable from each other.), except, as it happens, Lepidoptera. At first sight it seems difficult to suppose that a feature apparently so fundamental as s.e.x should be differently const.i.tuted in different animals, but that seems at present the least improbable inference. I mention these two groups of facts as ill.u.s.trating the nature and methods of modern genetic work. We must proceed by minute and specific a.n.a.lytical investigation. Wherever we look we find traces of the operation of precise and specific rules.

In the light of present knowledge it is evident that before we can attack the Species-problem with any hope of success there are vast arrears to be made up. He would be a bold man who would now a.s.sert that there was no sense in which the term Species might not have a strict and concrete meaning in contradistinction to the term Variety. We have been taught to regard the difference between species and variety as one of degree. I think it unlikely that this conclusion will bear the test of further research. To Darwin the question, What is a variation? presented no difficulties. Any difference between parent and offspring was a variation. Now we have to be more precise. First we must, as de Vries has shown, distinguish real, genetic, variation from FLUCTUATIONAL variations, due to environmental and other accidents, which cannot be transmitted. Having excluded these sources of error the variations observed must be expressed in terms of the factors to which they are due before their significance can be understood. For example, numbers of the variations seen under domestication, and not a few witnessed in nature, are simply the consequence of some ingredient being in an unknown way omitted from the composition of the varying individual. The variation may on the contrary be due to the addition of some new element, but to prove that it is so is by no means an easy matter. Casual observation is useless, for though these latter variations will always be dominants, yet many dominant characteristics may arise from another cause, namely the meeting of complementary factors, and special study of each case in two generations at least is needed before these two phenomena can be distinguished.

Click Like and comment to support us!

RECENTLY UPDATED NOVELS

About Darwin and Modern Science Part 9 novel

You're reading Darwin and Modern Science by Author(s): A. C. Seward. This novel has been translated and updated at LightNovelsOnl.com and has already 752 views. And it would be great if you choose to read and follow your favorite novel on our website. We promise you that we'll bring you the latest novels, a novel list updates everyday and free. LightNovelsOnl.com is a very smart website for reading novels online, friendly on mobile. If you have any questions, please do not hesitate to contact us at [email protected] or just simply leave your comment so we'll know how to make you happy.