The Dyeing of Woollen Fabrics - LightNovelsOnl.com
You're reading novel online at LightNovelsOnl.com. Please use the follow button to get notifications about your favorite novels and its latest chapters so you can come back anytime and won't miss anything.
The most common form of machine in which pieces are dyed is the jigger, commonly called the jig, this is shown in figure 16. It consists of a dye-vessel made long, sufficiently so to take the piece full width, wide at the top, narrow at the bottom. At the top on each side is placed a large winding roller on which the cloth is wound. At the bottom of the jig is placed a guide roller round which pa.s.ses the cloth. In some makes of jigs there are two guide rollers at the bottom and one at the top as shown in the ill.u.s.tration, so that the cloth pa.s.ses several times through the dye-liquor. In working the cloth is first wound on one of the rollers then threaded through the guide (p. 051) rollers and attached to the other winding roller. When this is done dye-liquor is run into the jig, and the gearing set in motion, and the cloth wound from the full on to the empty roller. With the object of keeping the piece tight a heavy press roller is arranged to bear on the cloth on the full roller. When all the cloth has pa.s.sed from one roller to the other it is said to have been given "one end". The direction of motion is now changed and the cloth sent in the opposite direction through the jig and the piece has now received another "end". This alternation from one roller to the other is continued as long as is deemed necessary, much depending on the depth of colour which is being dyed, some pale shades may only take two or three ends, deeper shades may take more. When dyeing wool with acid colours which are all absorbed from the dye-liquor, or the bath is exhausted, it is a good plan to run the pieces several ends so as to ensure thorough fixation of the dye on the cloth.
[Ill.u.s.tration: Fig. 16.--Dye-jiggers.]
It is not advisable in working these jigs to add the whole of the dye to the liquor at the commencement, but only a part of it, then when one end is given another portion of the dye may be added, such (p. 052) portions being always in the form of solution. Adding dyes in powder form inevitably leads to the production of colour specks on the finished goods. The reason for thus adding the dye-stuff in portions is that with some dyes the affinity for the fibre is so great that if all were added at once it would be absorbed before the cloth had been given one end, and, further, the cloth would be very deep at the front end while it would shade off to no colour at the other end. By adding the dye in portions this difficulty is overcome and more level shades are obtained, but it is met with in all cases of jigger dyeing. It is most common in dyeing wool with basic dyes like Magenta, Auramine, (p. 053) Methyl Violet or Brilliant Green, and with acid dyes like Acid Green, Formyl Violets, Azo Scarlet or Acid Yellow.
[Ill.u.s.tration: Fig. 17.--Dye-jigger in Section.]
Some attempts have been made to make jiggers automatic in their reversing action, but they have not been successful owing to the greatly varying conditions of length of pieces, their thickness, etc., which have to be dyed, and it is next to impossible to make all allowances for such varying conditions.
[Ill.u.s.tration: Fig. 18.--Wince Dye Beck.]
In figure 17 is shown the jig in section, when the working of the machine can be more easily traced.
#The Jig Wince or Wince Dye Beck.#--This dyeing machine is very largely used, particularly in the dyeing of woollen cloths. It is made by many makers, and varies somewhat in form accordingly. Figures 18 to 21 show three forms by different makers. In any make the jig wince or wince dye beck consists of a large rectangular, or in some cases (p. 054) semi-cylindrical, dye-vat. Probably the best shape would be to have a vat with one straight side at the front, and one curved side at the back.
[Ill.u.s.tration: Fig. 19.--Wince Dye Beck.]
In some a small guide roller is fitted at the bottom, under which the pieces to be dyed pa.s.s. Steam pipes are provided for heating the dye-liquors. The beck should be fitted with a false bottom, made of wood, perforated with holes, or of wooden lattice work, and under which the steam pipes are placed. The object being to prevent the pieces from coming in contact with the steam pipes, and so (p. 055) preventing the production of stains. Above the dye-vat and towards the back is the wince, a revolving skeleton wheel, which draws the pieces out of the dye-vat at the front, and delivers them into it again at the back. The construction of this wince is well shown in the drawings. The wince will take the pieces full breadth, but often they are somewhat folded, and so several pieces, four, five or six, can be dealt with at one time. In this case a guide rail is provided in the front part of the machine. In this rail are pegs which serve to keep the pieces of cloth separate, and so prevent entanglements. The pieces are st.i.tched end to end so as to form an endless band. When running through the vat they fall down in folds at the back part of the beck, and are drawn out from the bottom and up in the front. Each part thus remains for some time in the dye-liquor, during which it necessarily takes up the dye.
[Ill.u.s.tration: Fig. 20.--Plush Fabric Dyeing Machine.]
Figures 18 and 19 show forms of these wince dyeing machines, constructed of wood, and very largely used in the dyeing of woollen cloths. They are serviceable forms, and give very good results, being suitable for all dyes.
Figure 20 is a form of machine better adapted than the preceding (p. 056) for the dyeing of plush fabrics. In this kind of cloth it is important that the pile should not be interfered with in any way, and experience has shown that the winces of the form shown in figures 18 and 19 are rather apt to spoil the pile; further, of course, plush fabrics are dyed full breadth or open. In the wince now shown all troubles are (p. 057) avoided, and plush fabrics can be satisfactorily dyed in them.
[Ill.u.s.tration: Fig. 21.--Copper Cased Dye Beck. Mather & Platt.]
Figure 21 shows a dye-bath built of iron, cased with copper, suitable for dyeing most colours on woollen cloths.
[Ill.u.s.tration: Fig. 22.--Read Holliday's Hawking Machine.]
In the jig and wince dyeing machines the pieces necessarily are for a part of the time, longer in the case of the jigger than in that of the wince, out of the dye-liquor and exposed to the air. In the case of some dyes, indigo especially, this is not desirable, and yet it is advisable to run the cloth open for some time in the liquor so as to get thoroughly impregnated with the dye-liquor.
The so-called hawking machine, figure 22, is an ill.u.s.tration of Read Holliday's hawking machine, made by Messrs. Read Holliday & Sons, of Huddersfield. There is the dye-vat as usual; in this is suspended the drawing mechanism, whose construction is well shown in the drawing.
This is a pair of rollers driven by suitable gearing, between which the cloth pa.s.ses, and by which it is drawn through the machine. A small roller ensures the cloth properly leaving the large rollers, (p. 058) then there is a lattice-work arrangement over the pieces are drawn. In actual work the whole of this arrangement is below the surface of the dye-liquor in the vat. The piece to be dyed is threaded through the machine the ends st.i.tched together, then the arrangement is lowered into the dye-vat and set in motion, whereby the cloth is drawn continuously in the open form through the dye-liquor, this being done as long as experience shows to be necessary. This hawking machine will be found useful in dyeing indigo on wool, in mordanting and dyeing wool with the Alizarine series of dyes.
CHAPTER IV. (p. 059)
THE PRINCIPLES AND PRACTICE OF WOOL DYEING.
The various methods which are used in dyeing wool have, of course, underlying them certain principles on which they are based, and on the observance of which much of the success of the process depends.
Sometimes these principles are overlooked by dyers, with the result that they do not get good results from their work. It must be obvious to any person with any technical knowledge that all processes of dyeing either wool or silk, or cotton or any other fibre, must take into consideration the properties of the fibre on the one hand, and that of the dye-stuff on the other. Wool must be treated differently from cotton, a process of dyeing which gives good results with the latter fibre would lead to nothing but disastrous effects with wool or silk; on the other hand, processes are used in the dyeing of wool which could not be possibly used for cotton on account of the very different properties of the fibre.
A few words as to the properties of wool as far as they relate to the methods of dyeing may be of use. Wool has the property of resisting the action of acids in a great degree, so that it may be treated with even strong acids with impunity. On the other hand, alkalies and alkaline solutions have strong action on it; the caustic alkalies rapidly dissolve wool, and their use must be avoided in all cases of dyeing this fibre. The carbonates of the alkalies have not so strong an action, and therefore may be used in moderation; nevertheless, (p. 060) too strong solutions of these should not be used. Soap has no disintegrating action on wool, and soap solutions may be used whenever necessary for cleansing or dyeing wool. Ammonia has no action on wool, and it may be used in place of soap if desired. There is one feature of wool that must be alluded to here, and that is its felting property. When wool is boiled with water and is handled a good deal, the fibres clot or felt together into a firm coherent ma.s.s. This should be avoided as much as possible, and when wool is cleansed and dyed in the loose condition it is absolutely necessary that every care be taken to avoid felting. This condition is much influenced by the temperature and the condition of the bath in which the wool is being treated, too high a temperature or too prolonged a treatment tends to increase the felting, therefore in dyeing wool prolonged treatment at the boil must be avoided.
Further, the condition of the bath has some influence on this point; it is found that an alkaline bath tends to considerably increase the felting properties of the wool, and on this account dyers invariably avoid the use of both the caustic and carbonated alkalies. Strong soap liquors have also some influence in the direction of increasing the felting, therefore soap should not be used if it can possibly be done without. Ammonia has not so strong a felting action as the other alkalies. Acids, on the other hand, exert a r.e.t.a.r.ding action on the felting of the wool, and this is a matter of some interest and importance in the dyeing of wool, as an acid condition of the bath is necessary for dyeing by far the great majority of colouring matters on this fibre. Alkaline salts, such as Glauber's salt and common salt, exert little or no influence on this felting property, and can be added to dye-baths with impunity, and in many cases with good effect, so far as the quality of dyeing is concerned.
So far as the properties of the wool are concerned, it is seen (p. 061) that an acid condition of the dye-bath will work better than an alkaline condition, and wherever it is possible to use acids such should be added.
What has been said in regard to wool is equally true of all fibres derived from animals in the same way as wool is, such as horse-hair, fur of rabbits, hares and other animals, although, of course, there are some minor differences between different furs in their resistance to the action of acids and alkalies.
The next feature that influences the methods of dyeing wool is the varying properties of the dye-stuffs, or colouring matters. It is obvious that those which, like Magenta or Saffranine, have a strong affinity for the wool fibre must be dyed differently from those which, like Alizarine and Gambine, have no direct affinity for the wool fibre, and, further, which require the aid of mordants before they can be dyed, and on the character of which mordants the colour that is fixed on the fibre depends.
The dye-stuffs, independently of the question whether they be derived from natural sources or be of artificial origin, may be roughly divided into five groups, some of which may also be subdivided again as will be shown later on. These groups may be named the (1) Neutral, (2) Basic, (3) Acid, (4) Mordant, and (5) Indigo dye-stuffs. The first two cla.s.ses are practically dyed in the same way; but as there is a great difference in the chemical composition of the colouring matters comprised in them, it will be best to consider them separately.
_First Method_.--This method is used in applying the now large and increasing group of azo dye-stuffs, which are characterised by being able to dye unmordanted cotton from a simple boiling bath. The dye-stuffs that are applied by the method now to be described include such as Benzopurpurine, Chrysamine, Chrysophenine, t.i.tan red, t.i.tan yellow, Benzo brown, Diamine red, Diamine brown, Diamine blue, (p. 062) Congo blue, Congo red, etc. The dyeing is done in a bath at the boil.
If the bath contained only the dye-stuffs there would be a liability for the dyeing to be uneven, to prevent which a saline compound, such as salt, is added. Taking it all round, salt is the best body to add as it suits all colours very well indeed. Then come Glauber's salts; borax and phosphate of soda can also be used, but, owing to their slight alkaline properties, they are not so good as the neutral salts, like the two first named. When these colouring matters are dyed on cotton some of them dye best in a bath containing potash or soda, but these bodies, for reasons previously pointed out, are not available in wool dyeing, and should never be used. Wool dyes best in a slightly acid bath, and this may be taken advantage of in dyeing the yellows and blues of this group by adding a small quant.i.ty of acetic acid. The reds, as a rule, are affected by acids, and, therefore, it is not possible to use an acid bath with Benzopurpurine, Congo red, with the possible exception of the t.i.tan reds and scarlets, Diamine scarlet, Benzo fast scarlet, Purpuramine, which are faster to acetic acid than the other reds of this cla.s.s of dye-stuffs.
Probably the best plan of dyeing these colours is to first heat the bath to about 160 F., then enter the goods, and turn over two or three times to ensure that they are thoroughly impregnated with dye-liquor. The bath is now raised to the boil, and, steam being turned off, the goods are handled without further steam until the desired shade is obtained. Another plan is to enter the goods when the bath is at about 150 F., and, after raising to the boil, to work for half to one hour at that heat; but the plan first described gives rather better results, and is far preferable. The dye-baths, as a rule, are not completely exhausted, except when very pale shades are being dyed; in no case is it necessary to throw the dye-bath away, but simply to add the required amount of dye-stuff for a new batch; (p. 063) with those colouring matters which are not entirely exhausted from the bath a smaller amount, generally about three-fourths only, is required to be added, with about one-third the quant.i.ty of salt which was added to the first bath. Of course it is not advisable to keep the same bath or liquor in work always, but after about twenty or thirty batches of goods are dyed to throw it away and start a fresh liquor.
As a rule it will be found that these dye-stuffs are more thoroughly taken up from the bath than is the case in dyeing cotton; thus often with the same amount of dye-stuff in proportion to the material used the wool will dye rather a deeper shade than will cotton. In some cases, especially with the blues and violets, the shade is greatly different on wool from what it is on cotton, being generally redder and much stronger. (See the chapter on Union Dyeing.) While the shades are somewhat faster to light on wool than they are on cotton, they are no faster to soaping and in some cases not so fast. What may be the function of the salt, or other such added substance, is not very clear, probably it plays the same part as to similar bodies in dyeing the basic dye-stuffs. The dye-stuffs which are referred to above are all derived from coal-tar, and in the recipes which follow many examples of their use will be found.
There are but few natural dye-stuffs that have any direct affinity for wool. Turmeric, saffron, anotta, are about the only representatives, and these are not of much importance in wool dyeing by themselves, although they are sometimes used in conjunction with other natural dye-stuffs, when they are applied by a process which is adapted more especially for the other dye-stuff which is used.
_Second Method_.--The method of wool dyeing now being dealt with does not differ essentially from that described above, but as it is applied to quite a different cla.s.s of dye-stuffs it is thought better to consider it as a second method. The dye-stuffs made use of in (p. 064) this method are what are called the basic coal-tar colours, and it may be remarked in pa.s.sing that there are no natural colouring matters having the same properties. These dye-stuffs are derived from a number of so-called colour bases, such as Rosaniline, Pararosaniline, Methylrosaniline, Phenyl-rosaniline, and Auramine base. Many of these are colourless bodies containing the Amidogen group NH_{2}, which imparts to them basic properties enabling them to combine with solids to form salts, and these salts have a strong colouring power. They form the commercial dye-stuffs Magenta, Saffranine, Thioflavine T, Auramine, Benzoflavine, Brilliant green, Methyl violet, etc., and these are salts (usually the hydrochloride) of colour bases. All these basic dye-stuffs have strong affinity for the wool fibre, and will immediately combine with it, dyeing it in colours which resist was.h.i.+ng, etc., to a considerable extent, although there are great differences between the various members of the group in this respect.
It has been shown that what takes place in dying wool with these colouring matters is that the colour base combines with the fibre the acid of the dye-stuff remaining in the dye-liquor.
Although it is possible to dye wool with the basic dyes from a plain bath containing water only, yet the results are not satisfactory, especially when working on a large scale; and for dyeing pale shades especially, the affinity of the dye-stuff for the fibre is so great that the first portions of the goods which are entered into the dye-bath have a great tendency to absorb all the dye-stuff, or the larger proportion of it, so that uneven dyeing is the result, one end of the piece of cloth being darker than the other end. This defect is particularly accentuated when pale tints are being dyed, the colouring matter being completely absorbed before all the goods are entered into the bath, but it may be remedied by adding the dye-stuff to the bath in small quant.i.ties at intervals during the process of dyeing. The (p. 065) best and most satisfactory method, however, is to add to the bath 10 per cent. of the weight of the wool of Glauber's salt, or some other neutral alkaline salt, which addition almost entirely prevents any defect of uneven dyeing. How these a.s.sistant mordants act is somewhat uncertain, the explanation generally given is that they exert a slightly solvent action on the dye-stuff, and so prevent it from going upon the fibre too readily. This is scarcely an adequate explanation, but in want of a better it will have to stand.
The affinity of the basic dyes for wool increases with increase of temperature. This is a property that has an important bearing on the method of dyeing, and to any person who pays some attention to theory in its practical applications it indicates the most rational method of working, which is to enter the goods into the bath cold, or, at the most, at a hand heat, then, after working a short time to get the goods thoroughly impregnated with the dye-stuff, to gradually raise the temperature to the boil and work for from half an hour to an hour longer, even if before this time the dye-bath be exhausted. The reason for giving a fair length of time in the bath is to get the colour properly fixed on the fibre. The combination of the dye-stuff and the fibre is a chemical one, and, as stated above, the dye-stuff has to be decomposed so that the base may combine with the essential const.i.tuent of the wool fibre, while it is obvious that this decomposition and then the union of the colour base with the wool must take time, and as it is effected more easily and completely at the boiling point, it is advisable to work the goods in the bath so as to fully insure that they are given the necessary time for the chemical change to take place.
The dye-bath is generally completely exhausted of colour, but if fairly clean it need not be thrown away, but used for another batch of wool by simply adding more Glauber's salt and dye-stuff. After a (p. 066) time the bath gets too dirty to used, when it may be thrown away, and a new dye-liquor made up.
In dyeing for pale shades it is best to add the dye-stuff in small quant.i.ties at intervals during the process of dyeing, and to run the goods quickly through the bath, so as not to give the dye-stuff too much opportunity to become absorbed by a portion of the goods only.
Working according to the hints given above, the dyeing of wool with the basic coal-tar colours may be carried out in a very satisfactory manner.
_Third Method_.--This method consists in dyeing the wool in a bath containing the dye-stuff, a little acid (usually sulphuric) with the addition of Glauber's salt, or some other alkaline salt, the essential feature or principle being that the bath is an acid one. This method is applicable to the large group of azo dye-stuffs derived from coal tar, and also to the acid dyes prepared from the basic coal-tar colours by the process of sulphonation.
It is also used to apply indigo carmine to wool, probably the only good example of a natural dye-stuff applied by this process. Most of the natural colouring matters, such as logwood and fustic, belong to another group of dye-stuffs.
The simple azo dyes are combinations of two or more organic bases, united together by a peculiar and characteristic group of nitrogen atoms. Such azo colours are, however, insoluble in water, and therefore they cannot be used in dyeing and textile colouring, although the firm of Messrs. Read Holliday & Sons years ago patented a process whereby these insoluble azo colours could be developed on the cotton fibre direct, and thus fabrics made from that fibre could be dyed in fast colours. When these insoluble azo colours are treated with sulphuric acid they are converted into sulpho acids, undergoing what is called sulphonation, an operation of the greatest (p. 067) importance and value in the preparation of dye-stuffs. The preparation of indigo extract or indigo carmine from indigo is also a case of sulphonation. The sulpho-acids of the azo colours, of the basic dyes, and of indigo are usually insoluble in water, although there are great differences in their properties in this respect. They will combine with bases such as soda, calcium and potash to form salts which are soluble in water, and it is usually in the form of sodium salts that these azo and acid dye-stuffs are sold to the dyer and calico printer.
It is this power of combination with bases that makes them of value in wool dyeing. As Knecht and other authorities have pointed out, the wool fibre contains a basic principle capable of combining with acid bodies, and in wool dyeing with the colouring matters under discussion, this combination occurs between the sulpho-acid of the dye-stuff and the basic principle of the wool fibre.
This points to the fact that the dye-stuffs of this cla.s.s do not combine with the wool in the form in which they are supplied to the dyer as sodium salts, which is shown by a property that many if not all of them possess, of not dyeing the wool fibre in a neutral bath.
If a piece of wool be immersed in a solution of, say, a scarlet or indigo extract, which is neutral it is not dyed. The dye-liquor may penetrate thoroughly throughout the fabric, but if the piece of wool be lifted out, and allowed to drain, nearly all the liquor will drain away, and leave the wool nearly if not quite white, showing that the dye-stuff in the form in which it is sold has no affinity for the wool fibre. If now a few drops of sulphuric acid be added to the dye-liquor the wool will become dyed. The sulphuric acid liberates the free sulpho-acid of the dye-stuff, and this is now in a form to combine with the wool fibre, which it does. This is the fundamental principle underlying the acid method for dyeing wool with the acid group of colouring matters.
The practical application of the principle laid down above is a (p. 068) matter of simplicity compared with the other methods of dyeing. The composition of the bath is given above. It is best to enter the wool at from 150 to 160 F. and then to raise the temperature slowly to the boil. This method of proceeding gives time for the free colour acid of the dye to be liberated from the dye-stuff on the one hand, and for its combination with the wool fibre on the other. In dyeing pale tints with acid dye-stuffs it is a good plan not to add the acid until after the goods have been entered into the bath and worked for a short time to enable them to become impregnated with the dye-liquor; the acid may be then added, and the dyeing may be finished as usual.
By this plan of working more even dyeings can be obtained than by simply entering the goods direct into an acidified dye-liquor.
Any kind of acid may be employed, but generally sulphuric acid is used, partly because it is cheap, and partly because it is the commonest acid known. Acetic acid is also used in many cases.
_Fourth Method_.--We now come to the fourth method of dyeing wool.